ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic transitions and streams in galaxy halos

109   0   0.0 ( 0 )
 نشر من قبل Aaron J. Romanowsky
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemo-dynamics of galaxy halos beyond the Local Group may now be mapped out through the use of globular clusters and planetary nebulae as bright tracer objects, along with deep multi-slit spectroscopy of the integrated stellar light. We present results from surveying nearby early-type galaxies, including evidence for kinematically distinct halos that may reflect two-phase galaxy assembly. We also demonstrate the utility of the tracer approach in measuring the kinematics of stellar substructures around the Umbrella Galaxy, which allow us to reconstruct the progenitor properties and stream orbit.



قيم البحث

اقرأ أيضاً

212 - Jo Bovy 2015
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and $N$-body calcul ations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct and indirect-detection dark-matter searches.
193 - Lodovico Coccato 2016
The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio HI emission; on the contrary, early-type g alaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.
The dark matter halos that surround Milky Way-like galaxies in cosmological simulations are, to first order, triaxial. Nearly 30 years ago it was predicted that such triaxial dark matter halos should exhibit steady figure rotation or tumbling motions for durations of several gigayears. The angular frequency of figure rotation predicted by cosmological simulations is described by a log-normal distribution of pattern speed with a median value 0.15hkm/s/kpc (~ 0.15h rad/Gyr ~ 9h deg/Gyr) and a width of 0.83km/s/kpc. These pattern speeds are so small that they have generally been considered both unimportant and undetectable. In this work we show that even this extremely slow figure rotation can significantly alter the structure of extended stellar streams produced by the tidal disruption of satellites in the Milky Way halo. We simulate the behavior of a Sagittarius-like polar tidal stream in triaxial dark matter halos with different shapes, when the halos are rotated about the three principal axes. For pattern speeds typical of cosmological halos we demonstrate, for the first time, that a Sagittarius-like tidal stream would be altered to a degree that is detectable even with current observations. This discovery will potentially allow for a future measurement of figure rotation of the Milky Ways dark halo, and perhaps enabling the first evidence of this relatively unexplored prediction of LambdaCDM.
In an effort to better understand the formation of galaxy groups, we examine the kinematics of a large sample of spectroscopically confirmed X-ray galaxy groups in the Cosmic Evolution Survey (COSMOS) with a high sampling of galaxy group members up t o $z=1$. We compare our results with predictions from the cosmological hydrodynamical simulation of {sc Horizon-AGN}. Using a phase-space analysis of dynamics of groups with halo masses of $M_{mathrm{200c}}sim 10^{12.6}-10^{14.50}M_odot$, we show that the brightest group galaxies (BGG) in low mass galaxy groups ($M_{mathrm{200c}}<2 times 10^{13} M_odot$) have larger proper motions relative to the group velocity dispersion than high mass groups. The dispersion in the ratio of the BGG proper velocity to the velocity dispersion of the group, $sigma_{mathrm{BGG}}/sigma_{group}$, is on average $1.48 pm 0.13$ for low mass groups and $1.01 pm 0.09$ for high mass groups. A comparative analysis of the {sc Horizon-AGN} simulation reveals a similar increase in the spread of peculiar velocities of BGGs with decreasing group mass, though consistency in the amplitude, shape, and mode of the BGG peculiar velocity distribution is only achieved for high mass groups. The groups hosting a BGG with a large peculiar velocity are more likely to be offset from the $L_x-sigma_{v}$ relation; this is probably because the peculiar motion of the BGG is influenced by the accretion of new members.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا