ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ultraviolet View of the Magellanic Clouds from GALEX: A First Look at the LMC Source Catalog

96   0   0.0 ( 0 )
 نشر من قبل Raymond Simons
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831AA) and far-UV (FUV, 1344-1786AA) bands at 5 resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5$sigma$ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. The density of UV sources is quite high in many areas of the LMC and SMC. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. We performed custom-photometry of the GALEX data in the MC survey region ($<15^{circ}$ from the LMC, $<10^{circ}$ from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced for the LMC contains nearly 6 million unique NUV point sources within 15$^{circ}$ and is briefly presented herein. This paper provides a first look at the GALEX MC survey and highlights some of the science investigations that the entire catalog and imaging dataset will make possible.



قيم البحث

اقرأ أيضاً

We present Version 1.0 of the NASA Galaxy Evolution Explorer (GALEX) ultraviolet variability catalog (GUVV) that contains information on 84 time-variable and transient sources gained with simultaneous near and far ultraviolet photometric observations . These time-variable sources were serendipitously revealed in the various 1.2 degree star fields currently being surveyed by the GALEX satellite in two ultraviolet bands (NUV 1750-2750A, FUV 1350-1750A) with limiting AB magnitudes of 23-25. The largest-amplitude variable objects presently detected by GALEX are M-dwarf flare stars, which can brighten by 5-10 mag in both the NUV and FUV bands during short duration (< 500s) outbursts. Other types of large-amplitude ultraviolet variable objects include ab-type RR Lyrae stars, which can vary periodically by 2-5mag in the GALEX FUV band. This first GUVV catalog lists galactic positions and possible source identifications in order to provide the astronomical community with a list of time-variable objects that can now be repeatedly observed at other wavelengths. We expect the total number of time-variable source detections to increase as the GALEX mission progresses, such that later version numbers of the GUVV catalog will contain substantially more variable sources.
We present the results from the OGLE-II survey (1996-2000) towards the Large Magellanic Cloud (LMC), which has the aim of detecting the microlensing phenomena caused by dark matter compact objects in the Galactic Halo (Machos). We use high resoluti on HST images of the OGLE fields and derive the correction for the number of monitored stars in each field. This also yield blending distributions which we use in catalogue level Monte Carlo simulations of the microlensing events in order to calculate the detection efficiency of the events. We detect two candidates for microlensing events in the All Stars Sample, which translates into an optical depth of 0.43+-0.33x 10e-7. If both events were due to Macho the fraction of mass of compact dark matter objects in the Galactic halo would be 8+-6 per cent. This optical depth, however, along with the characteristics of the events, seems to be consistent with the self-lensing scenario, i.e., self-lensing alone is sufficient to explain the observed microlensing signal. Our results indicate a non-detection of Machos lensing towards the LMC with an upper limit on their abundance in the Galactic halo of 19 per cent for M=0.4 Msun and 10 per cent for masses between 0.01 and 0.2 Msun.
151 - Xu Zhou , Zhou Fan , Zhaoji Jiang 2010
In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to DomeA, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5degree x 4.5degree field of view (FOV). It operates robotically as part of the Plateau Observatory, PLATO, with each telescope taking an image every 30 seconds throughout the year whenever it is dark. During 2008, CSTAR #1 performed almost flawlessly, acquiring more than 0.3 million i-band images for a total integration time of 1728 hours during 158 days of observations. For each image taken under good sky conditions, more than 10,000 sources down to 16 mag could be detected. We performed aperture photometry on all the sources in the field to create the catalog described herein. Since CSTAR has a fixed pointing centered on the South Celestial Pole (Dec =-90 degree), all the sources within the FOV of CSTAR were monitored continuously for several months. The photometric catalog can be used for studying any variability in these sources, and for the discovery of transient sources such as supernovae, gamma-ray bursts and minor planets.
In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). T his unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.
275 - L. Inno , G. Bono , N. Matsunaga 2016
We present a detailed investigation of the Large Magellanic Cloud (LMC) disk using classical Cepheids. Our analysis is based on optical (I,V; OGLE-IV), near-infrared (NIR: J,H,Ks) and mid-infrared (MIR: w1; WISE) mean magnitudes. By adopting new temp lates to estimate the NIR mean magnitudes from single-epoch measurements, we build the currently most accurate, largest and homogeneous multi-band dataset of LMC Cepheids. We determine Cepheid individual distances using optical and NIR Period-Wesenheit relations (PWRs), to measure the geometry of the LMC disk and its viewing angles. Cepheid distances based on optical PWRs are precise at 3%, but accurate to 7, while the ones based on NIR PWRs are more accurate (to 3%), but less precise (2%-15%), given the higher photometric error on the observed magnitudes. We found an inclination i=25.05 $pm$ 0.02 (stat.) $pm$ 0.55 (syst.) deg, and a position angle of the lines of nodes P.A.=150.76 $pm$ 0.02(stat.) $pm$ 0.07(syst.) deg. These values agree well with estimates based either on young (Red Supergiants) or on intermediate-age (Asymptotic Giant Branch, Red Clump) stellar tracers, but they significantly differ from evaluations based on old (RR Lyrae) stellar tracers. This indicates that young/intermediate and old stellar populations have different spatial distributions. Finally, by using the reddening-law fitting approach, we provide a reddening map of the LMC disk which is ten times more accurate and two times larger than similar maps in the literature. We also found an LMC true distance modulus of $mu_{0,LMC}=18.48 pm 0.10$ (stat. and syst.) mag, in excellent agreement with the currently most accurate measurement (Pietrzynski et al. 2013).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا