ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary and quasi-stationary light pulse in three-level cold atomic system

119   0   0.0 ( 0 )
 نشر من قبل Sergey Moiseev A
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied stationary and quasi-stationary signal light pulses in cold lambda-type atomic media driven by counterpropagating control laser fields at the condition of electromagnetically induced transparency. By deriving a dispersion relation we present spectral and temporal properties of the signal light pulse and a significant influence of atomic decoherence on the coupled stationary light pulses for spatial splitting. Finally we discuss quasi-stationary light pulse evolution characterized by frozen spatial spreading for a robust coherent control of slow light pulses.



قيم البحث

اقرأ أيضاً

184 - B. X. Wang , C. Y. Zhao 2020
Topological quantum optical states in one-dimensional (1D) quasiperiodic cold atomic chains are studied in this work. We propose that by introducing incommensurate modulations on the interatomic distances of 1D periodic atomic chains, the off-diagona l Aubry-Andre-Harper (AAH) model can be mimicked, although the crucial difference is the existence of long-range dipole-dipole interactions. The discrete band structures with respect to the modulation phase, which plays the role of a dimension extension parameter, are calculated for finite chains beyond the nearest-neighbor approximation. It is found that the present system indeed supports nontrivial topological states localized over the boundaries. Despite the presence of long-range dipole-dipole interactions that leads to an asymmetric band structure, it is demonstrated that this system inherits the topological properties of two-dimensional integer quantum Hall systems. The spectral position, for both real and imaginary frequencies, and number of these topologically protected edge states are still governed by the gap-labeling theorem and characterized by the topological invariant, namely, the (first) Chern number, indicating the validity of bulk-boundary correspondence. Due to the fractal spectrum arising from the quasiperiodicity in a substantially wide range of system parameters, our system provides a large number of topological gaps and optical states readily for practical use. It is also revealed that a substantial proportion of the topological edge states are highly subradiant with extremely low decay rates, which therefore offer an appealing route for controlling the emission of external quantum emitters and achieving high-fidelity quantum state storage.
We study the influence of three laser beams on the center of mass motion of cold atoms with internal energy levels in a tripod configuration. We show that similar to electrons in graphene the atomic motion can be equivalent to the dynamics of ultra-r elativistic two-component Dirac fermions. We propose and analyze an experimental setup for observing such a quasi-relativistic motion of ultracold atoms. We demonstrate that the atoms can experience negative refraction and focussing by Veselago-type lenses. We also show how the chiral nature of the atomic motion manifests itself as an oscillation of the atomic internal state population which depends strongly on the direction of the center of mass motion. For certain directions an atom remains in its initial state, whereas for other directions the populations undergo oscillations between a pair of internal states.
The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz ing slow light due to electromagnetically induced transparency (EIT). The drag effect is enhanced by a factor 360,000, corresponding to the ratio between the light speed in vacuum and the group velocity under EIT conditions. We study the contribution of the thermal atomic motion, which is much faster than the mean medium velocity, and identify the regime where its effect on the transverse drag is negligible.
Physical processes that could facilitate coherent control of light propagation are now actively explored. In addition to fundamental interest, these efforts are stimulated by possibilities to develop, for example, a quantum memory for photonic states . At the same time, controlled localization and storage of photonic pulses may allow novel approaches to manipulate light via enhanced nonlinear optical processes. Recently, Electromagnetically Induced Transparency (EIT) was used to reduce the group velocity of propagating light pulses and to reversibly map propagating light pulses into stationary spin excitations in atomic media. Here we describe and experimentally demonstrate a novel technique in which light propagating in a medium of Rb atoms is converted into an excitation with localized, stationary electromagnetic energy, which can be held and released after a controllable interval. Our method creates pulses of light with stationary envelopes bound to an atomic spin coherence, raising new possibilities for photon state manipulation and non-linear optical processes at low light levels.
283 - M. Bache , O. Bang , J. Moses 2007
We study soliton pulse compression in materials with cascaded quadratic nonlinearities, and show that the group-velocity mismatch creates two different temporally nonlocal regimes. They correspond to what is known as the stationary and nonstationary regimes. The theory accurately predicts the transition to the stationary regime, where highly efficient pulse compression is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا