ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Evidence of an Insulator-Superconductor Transition in Single-Layer FeSe/SrTiO3 Films

315   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In high temperature cuprate superconductors, it is now generally agreed that the parent compound is a Mott insulator and superconductivity is realized by doping the antiferromagnetic Mott insulator. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. It has been proposed theoretically that the parent compound of the iron-based superconductors may be on the verge of a Mott insulator, but so far no clear experimental evidence of doping-induced Mott transition has been available. Here we report an electronic evidence of an insulator-superconductor transition observed in the single-layer FeSe films grown on the SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with the increasing doping. This observation represents the first example of an insulator-superconductor transition via doping observed in the iron-based superconductors. It indicates that the parent compound of the iron-based superconductors is in proximity of a Mott insulator and strong electron correlation should be considered in describing the iron-based superconductors.



قيم البحث

اقرأ أيضاً

The mechanism of high temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure, in particular the Fermi surface topology, is considered to play an essential rol e in dictating the superconductivity. Recent revelation of distinct electronic structure and possible high temperature superconductivity with a transition temperature Tc above 65 K in the single-layer FeSe films grown on the SrTiO3 substrate provides key information on the roles of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high resolution angle-resolved photoemission measurement on the electronic structure and superconducting gap of a novel FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviors to that of the superconducting single-layer FeSe/SrTiO3 film in terms of Fermi surface topology, band structure and nearly isotropic superconducting gap without nodes. These observations provide significant insights in understanding high temperature superconductivity in the single-layer FeSe/SrTiO3 film in particular, and the mechanism of superconductivity in the iron-based superconductors in general.
231 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much atten tion. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
262 - Defa Liu , Xianxin Wu , Fangsen Li 2020
The accurate theoretical description of the underlying electronic structures is essential for understanding the superconducting mechanism of iron-based superconductors. Compared to bulk FeSe, the superconducting single-layer FeSe/SrTiO3 films exhibit a distinct electronic structure consisting of only electron Fermi pockets, due to the formation of a new band gap at the Brillouin zone (BZ) corners and an indirect band gap between the BZ center and corners. Although intensive studies have been carried out, the origin of such a distinct electronic structure and its connection to bulk FeSe remain unclear. Here we report a systematic study on the temperature evolution of the electronic structure in single-layer FeSe/SrTiO3 films by angle-resolved photoemission spectroscopy. A temperature-induced electronic phase transition was clearly observed at 200 K, above which the electronic structure of single-layer FeSe/SrTiO3 films restored to that of bulk FeSe, characterized by the closing of the new band gap and the vanishing of the indirect band gap. Moreover, the interfacial charge transfer effect induced band shift of ~ 60 meV was determined for the first time. These observations not only show the first direct evidence that the electronic structure of single-layer FeSe/SrTiO3 films originates from bulk FeSe through a combined effect of an electronic phase transition and an interfacial charge transfer, but also provide a quantitative basis for theoretical models in describing the electronic structure and understanding the superconducting mechanism in single-layer FeSe/SrTiO3 films.
259 - R. Peng , X. P. Shen , X. Xie 2013
Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillion zone corner are resolved with negligible hybridization between them, indicating the symmetry of the low energy electronic structure remains intact as a free-standing single-layer FeSe, although it is on a substrate. The superconducting gap closes at a record high temperature of 70K for the iron based superconductors. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results put strong constraints on the current theories, and support the coexistence of both even and odd parity spin-singlet pairing channels as classified by the lattice symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا