ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodicity of a collective random walk on a circle

157   0   0.0 ( 0 )
 نشر من قبل Michael Blank
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael Blank




اسأل ChatGPT حول البحث

We discuss conditions for unique ergodicity of a collective random walk on a continuous circle. Individual particles in this collective motion perform independent (and different in general) random walks conditioned by the assumption that the particles cannot overrun each other. Additionally to sufficient conditions for the unique ergodicity we discover a new and unexpected way for its violation due to excessively large local jumps. Necessary and sufficient conditions for the unique ergodicity of the deterministic version of this system are obtained as well. Technically our approach is based on the interlacing property of the spin function which describes states of pairs of particles in coupled processes under study.



قيم البحث

اقرأ أيضاً

89 - J. D. Skufca 2003
We consider the problem of stochastic flow of multiple particles traveling on a closed loop, with a constraint that particles move without passing. We use a Markov chain description that reduces the problem to a generalized random walk on a hyperplan e (with boundaries). By expressing positions via a moving reference frame, the geometry of the no-passing criteria is greatly simplified, with the resultant condition expressible as the coordinate system planes which bound the first orthant. To determine state transition probabilities, we decompose transitions into independent events and construct a digraph representation in which calculating transition probability is reduced to a shortest path determination on the digraph. The resultant decomposition digraph is self-converse, and we exploit that property to establish the necessary symmetries to find the stationary density for the process.
We study the existence of transitive exchange maps with flips defined on the unit circle. We provide a complete answer to the question of whether there exists a transitive exchange map of the unit circle defined on n subintervals and having f flips.
176 - U. Haboeck 2008
We show that the twisted planar random walk - which results by summing up stationary increments rotated by multiples of a fixed angle - is recurrent under diverse assumptions on the increment process. For example, if the increment process is alpha-mi xing and of finite second moment, then the twisted random walk is recurrent for every angle fixed choice of the angle out of a set of full Lebesgue measure, no matter how slow the mixing coefficients decay.
63 - Yuan Gao , Jian-Guo Liu 2021
Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifo ld, via Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both two schemes enjoy stochastic $Q$-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, which enable us to prove unconditional stability, ergodicity and error estimates. Based on two upwind schemes, several numerical examples - including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system - are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. Thus they can be adapted to manifold-related computations induced from high dimensional molecular dynamics.
289 - Antal A. Jarai , Minwei Sun 2021
We consider a simple random walk on $mathbb{Z}^d$ started at the origin and stopped on its first exit time from $(-L,L)^d cap mathbb{Z}^d$. Write $L$ in the form $L = m N$ with $m = m(N)$ and $N$ an integer going to infinity in such a way that $L^2 s im A N^d$ for some real constant $A > 0$. Our main result is that for $d ge 3$, the projection of the stopped trajectory to the $N$-torus locally converges, away from the origin, to an interlacement process at level $A d sigma_1$, where $sigma_1$ is the exit time of a Brownian motion from the unit cube $(-1,1)^d$ that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا