ﻻ يوجد ملخص باللغة العربية
The thermal, chemical, and kinematic properties of the potentially multi-phase circum/inter-galactic medium at the virial radii of galaxy clusters remain largely uncertain. We present an X-ray study of Abell 2246 and GMBCG J255.34805+64.23661 (z=0.23 and 0.45), two foreground clusters of the UV-bright QSO HS 1700+6416, based on 240 ks Chandra/ACIS-I observations. We detect enhanced diffuse X-ray emission to the projected distances beyond r_{200} radii of these two clusters. The large-scale X-ray emission is consistent with being azimuthally symmetric at the projected radii of the QSO (0.36 and 0.8 times the radii of the two clusters). Assuming a spherical symmetry, we obtain the de-projected temperature and density profiles of the X-ray-emitting gas. Excluding the cool cores that are detected, we find that the mean temperature of the hot gas is about 4.0 keV for Abell 2246 and 5.5 keV for GMBCG J255.34805+64.23661, although there are indications for temperature drop at large radii. From these results, we can estimate the density and pressure distributions of the hot gas along the QSO sightline. We further infer the radial entropy profile of Abell 2246 and compare it with the one expected from purely gravitational hierarchical structure formation. This comparison shows that the ICM in the outer region of the clusters is likely in a clumpy and multi-phased state. These results, together with the upcoming HST/COS observations of the QSO sightline, will enable a comprehensive investigation of the multi-phase medium associated with the clusters.
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge
Observational constraints on the average radial distribution profile of AGN in distant galaxy clusters can provide important clues on the triggering mechanisms of AGN activity in dense environments and are essential for a completeness evaluation of c
We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuth
Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources.
The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematicall