ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: Spectral Energy Distributions of Submillimeter Galaxies at z >4

147   0   0.0 ( 0 )
 نشر من قبل Jiasheng Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies at $z>$4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their Spectral Energy Distributions (SED) and a composite model to fit the SEDs. The model includes a stellar emission component at $lambda_{rm rest} <$ 3.5$ mu$m; a hot dust component peaking at $lambda_{rest} sim$ 5$,mu$m; and cold dust component which becomes significant for $lambda_{rm rest} >$ 50$,mu$m. Six objects in the sample are detected at 250 and 350$ mu$m. The dust temperatures for the sources in this sample are in the range of 40$-$80 K, and their $L_{rm FIR}$ $sim$ 10$^{13}$ L$_{odot}$ qualifies them as Hyper$-$Luminous Infrared Galaxies (HyperLIRGs). The mean FIR-radio index for this sample is around $< q > = 2.2$ indicating no radio excess in their radio emission. Most sources in the sample have 24$ mu$m detections corresponding to a rest-frame 4.5$ mu$m luminosity of Log$_{10}$(L$_{4.5}$ / L$_{odot}$) = 11 $sim$ 11.5. Their L$_{rm 4.5}$/$L_{rm FIR}$ ratios are very similar to those of starburst dominated submillimeter galaxies at $z sim$ 2. The $L_{rm CO}-L_{rm FIR}$ relation for this sample is consistent with that determined for local ULIRGs and SMGs at $z sim$ 2. We conclude that submillimeter galaxies at $z >$ 4 are hotter and more luminous in the FIR, but otherwise very similar to those at $z sim$ 2. None of these sources show any sign of the strong QSO phase being triggered.



قيم البحث

اقرأ أيضاً

We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize $sim7000$ galaxies from $1<z<4$ into $90$ groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with $Rsim 50$ resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000AA break, $D(4000)$, we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest H$alpha$ emission ($EW_{rm REST}sim40$AA) compared to more typical star-forming composite SEDs at $log_{10}(M/M_odot)sim10.5$ ($EW_{rm REST}sim80$AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher Sersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from $zsim3$ to $zsim1$, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at $zlesssim1.5$. We calculate average quenching timescales of 1.6 Gyr at $zsim1.5$ and 0.9 Gyr at $zsim2.5$ and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since $zsim2$.
We present spectral energy distributions (SEDs) of 69 QSOs at z>5, covering a rest frame wavelength range of 0.1mu to ~80mu, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at lambd a_rest ~< 4mu), but drops towards the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (~1300K) component and, in cases with prominent FIR emission, also by a cold (~50K) component. In the FIR detected cases the luminosity of the cold component is on the order of 10^13 L_sun which is likely heated by star formation. From the SED fits we also determine that the AGN dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (~1300K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L_UV/opt and L_NIR and show low equivalent widths (EWs) in H_alpha and in Ly_alpha. In the distribution of H_alpha EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low redshift AGN.
The recent discovery of high redshift dusty galaxies implies a rapid dust enrichment of their interstellar medium (ISM). To interpret these observations, we run a cosmological simulation in a 30$h^{-1}$ cMpc/size volume down to $z approx 4$. We use t he hydrodynamical code dustyGadget, which accounts for the production of dust by stellar populations and its evolution in the ISM. We find that the cosmic dust density parameter ($Omega_{rm d}$) is mainly driven by stellar dust at $z gtrsim 10$, so that mass- and metallicity-dependent yields are required to assess the dust content in the first galaxies. At $z lesssim 9$ the growth of grains in the ISM of evolved systems (Log$(M_{star}/M_{odot})>8.5$) significantly increases their dust mass, in agreement with observations in the redshift range $4 lesssim z < 8$. Our simulation shows that the variety of high redshift galaxies observed with ALMA can naturally be accounted for by modeling the grain-growth timescale as a function of the physical conditions in the gas cold phase. In addition, the trends of dust-to-metal (DTM) and dust-to-gas (${cal D}$) ratios are compatible with the available data. A qualitative investigation of the inhomogeneous dust distribution in a representative massive halo at $z approx 4$ shows that dust is found from the central galaxy up to the closest satellites along polluted filaments with $rm Log({cal D}) leq -2.4$, but sharply declines at distances $d gtrsim 30$ kpc along many lines of sight, where $rm Log({cal D}) lesssim -4.0$.
We perform SED fitting analysis on a COSMOS sample covering UV-to-FIR wavelengths with emission lines from the FMOS survey. The sample of 182 objects with H$alpha$ and [OIII]$lambda5007$ emission spans over a range of $1.40<rm{z}<1.68$. We obtain rob ust estimates of stellar mass ($10^{9.5}-10^{11.5}~rm{M_odot}$) and SFR ($10^1-10^3~rm{M_odot}~rm{yr}^{-1}$) from the Bayesian analysis with CIGALE fitting continuum photometry and H$alpha$. We obtain a median attenuation of A$_rm{Halpha}=1.16pm0.19$ mag and A$_rm{[OIII]}=1.41pm0.22$ mag. H$alpha$ and [OIII]$lambda5007$ attenuations are found to increase with stellar mass, confirming previous findings. A difference of $57$% in the attenuation experienced by emission lines and continuum is found in agreement with the lines being more attenuated than the continuum. New CLOUDY HII-region models in CIGALE enable good fits of H$alpha$, H$beta$, [OIII]$lambda5007$ emission lines with differences smaller than $0.2$ dex. Fitting [NII]$lambda6584$ line is challenging due to well-known discrepancies in the locus of galaxies in the BPT diagram at intermediate redshifts. We find a positive correlation for SFR and dust-corrected L$_rm{[OIII]lambda5007}$ and we derive the linear relation $log_{10}rm{(SFR/rm{M}_odot~rm{yr}^{-1})}=log_{10} (rm{L}_{[rm{OIII]}}/rm{ergs~s^{-1}})-(41.20pm0.02)$. Leaving the slope as a free parameter leads to $log_{10}rm{(SFR/rm{M}_odot~rm{yr}^{-1})}=(0.83pm0.06)log_{10}(rm{L}_{[rm{OIII]}}/rm{ergs~s^{-1}})-(34.01pm2.63)$. Gas-phase metallicity and ionization parameter variations account for a $0.24$ dex and $1.1$ dex of the dispersion, respectively. An average value of $logrm{U}approx-2.85$ is measured for this sample. Including HII-region models to fit simultaneously photometry and emission line fluxes are paramount to analyze future data from surveys such as MOONS and PFS.
We report the likely identification of a substantial population of massive M~10^11M_Sun galaxies at z~4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey. The obser ved spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000AA breaks, relatively old stellar populations, large stellar masses and low SFRs, with a median specific SFR of 2.9+/-1.8 x 10^-11/yr. Ultradeep Herschel/PACS 100micron, 160micron and Spitzer/MIPS 24micron data reveal no dust-obscured SFR activity for 15/19 (79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the SED fit, indicating independently that the average specific SFR is at least 10x smaller than of typical star-forming galaxies at z~4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8+/-0.7 x 10^-5Mpc^-3 to a limit of log10M/M_Sun>10.6, which is 10x and 80x lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z~4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8Gyr and stellar mass of 0.8x10^11M_Sun, the galaxies likely started forming stars before z =5, with SFRs well in excess of 100M_Sun/yr, far exceeding that of similarly abundant UV-bright galaxies at z>4. This suggests that most of the star-formation in the progenitors of quiescent z~4 galaxies was obscured by dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا