ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Planck and WMAP CMB Map Reconstruction

311   0   0.0 ( 0 )
 نشر من قبل Jerome Bobin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined local-generalized morphological component analysis (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.



قيم البحث

اقرأ أيضاً

69 - Vipin Sudevan 2016
We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multi-phase iterative internal-linear-combination (ILC) approach in harmonic space. The new procedure consists of two phases. In phase 1, a diffuse foreground cleaned map is obtained by performing a usual ILC operation in the harmonic space in a single iteration over the desired portion of the sky. In phase 2, we obtain the final foreground cleaned map using an iterative ILC approach also in the harmonic space, however, now, during each iteration of foreground minimization, some of the regions of the sky that are not being cleaned in the current iteration, are replaced by the corresponding cleaned portions of the phase 1 cleaned map. The new ILC method nullifies a foreground leakage signal that is otherwise inevitably present in the old and usual harmonic space iterative ILC method. The new method is flexible to handle input frequency maps, irrespective of whether or not they initially have the same instrumental and pixel resolution, by bringing them to a common and maximum possible beam and pixel resolution at the beginning of the analysis. This dramatically reduces data redundancy and hence memory usage and computational cost. During the ILC weight calculation it avoids any need to deconvolve partial sky spherical harmonic coefficients by the beam and pixel window functions, which in strict mathematical sense, is not well-defined for azimuthally symmetric window functions. Using WMAP 9-year and Planck-2015 published frequency maps we obtain a pair of foreground cleaned CMB maps and CMB angular power spectrum. Our power spectrum match well with Planck-2015 results, with some difference. Finally, we show that the weights for ILC foreground minimization have an intrinsic characteristic that it tends to produce a statistically isotropic CMB map as well.
143 - L.A. Popa 2009
We make a more general determination of the inflationary observables in the standard 4-D and 5-D single-field inflationary scenarios, by the exact reconstruction of the dynamics of the inflation potential during the observable inflation with minimal number of assumptions: the computation does not assume the slow-roll approximation and is valid in all regimes if the field is monotonically rolling down its potential. Making use of the {em Hamilton-Jacobi} formalism developed for the 5-D single-field inflation model,we compute the scale dependence of the amplitudes of the scalarand tensor perturbations by integrating the exact mode equation. We analyze the implications of the theoretical uncertainty in the determination of the reheating temperature after inflation on the observable predictions of inflation and evaluate its impact on the degeneracy of the standard inflation consistency relation.
342 - D. Larson 2014
We examine the consistency of WMAP9 and Planck data. We compare sky maps, power spectra, and inferred LCDM cosmological parameters. Residual dipoles are seen in the WMAP and Planck sky map differences, but are consistent within the uncertainties and are not large enough to explain the widely-noted differences in angular power spectra at higher l. After removing residual dipoles and galactic foregrounds, the residual difference maps exhibit a quadrupole and other large-scale systematic structure. We identify this structure as possibly originating from Plancks beam sidelobe pick-up, but note that it appears to have insignificant cosmological impact. We develop an extension of the internal linear combination technique and find features that plausibly originate in the Planck data. We examine LCDM model fits to the angular power spectra and conclude that the ~2.5% difference in the spectra at multipoles greater than l~100 are significant at the 3-5 sigma level. We revisit the analysis of WMAPs beam data and conclude that previously-derived uncertainties are robust and cannot explain the power spectrum differences. Finally, we examine the consistency of the LCDM parameters inferred from each data set taking into account the fact that both experiments observe the same sky, but cover different multipole ranges, apply different sky masks, and have different noise. While individual parameter values agree within the uncertainties, the 6 parameters taken together are discrepant at the ~6 sigma level, with chi2=56 for 6 dof (PTE = 3e-10). Of the 6 parameters, chi2 is best improved by marginalizing over Omega_c h^2, giving chi2=5.2 for 5 degrees of freedom. We find that perturbing the WMAP window function by its dominant beam error profile has little effect on Omega_c h^2, while perturbing the Planck window function by its corresponding error profile has a much greater effect on Omega_c h^2.
The largest fluctuation in the CMB sky is the CMB dipole, which is believed to be caused by the motion of our observation frame with respect to the CMB rest frame. This motion accounts for the known motion of the Solar System barycentre with a best-f it amplitude of 369 km/s, in the direction ($ell= 264^circ$, $b=48^circ$) in galactic coordinates. Along with the CMB dipole signal, this motion also causes an inevitable signature of statistical anisotropy in the higher multipoles due to the modulation and aberration of the CMB temperature and polarization fields. This leads to a correlation between adjacent CMB multipoles causing a non-zero value of the off-diagonal terms in the covariance matrix which can be captured in terms of the dipolar spectra of the bipolar spherical harmonics (BipoSH). In our work, we jointly infer the CMB power spectrum and the BipoSH spectrum in a Bayesian framework using the $textit{Planck}$-2018 $texttt{SMICA}$ temperature map. We detect amplitude and direction of the local motion consistent with the canonical value $v=369$ km/s inferred from CMB dipole with a statistical significance of $4.54sigma$, $4.97sigma$ and $5.23sigma$ respectively from the masked temperature map with the available sky fraction $40.1%$, $59.1%$, and $72.2%$, confirming the common origin of both the signals. The Bayes factor in favor of the canonical value is between $7$ to $8$ depending on the choice of mask. But it strongly disagrees with the value inferred from quasar distribution from the Wide-field Infrared Survey Explorer data set with a value of the Bayes factor about $10^{-11}$.
81 - Y. Omori , R. Chown , G. Simard 2017
We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and emph{Planck} temperature data. The 150 GHz temperature data from the $2500 {rm deg}^{2}$ SPT-SZ survey is combined with th e emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $ell$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $C_{L}^{phiphi}$, and compare it to the theoretical prediction for a $Lambda$CDM cosmology consistent with the emph{Planck} 2015 data set, finding a best-fit amplitude of $0.95_{-0.06}^{+0.06}({rm Stat.})! _{-0.01}^{+0.01}({rm Sys.})$. The null hypothesis of no lensing is rejected at a significance of $24,sigma$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $C_{L}^{phi G}$, between the SPT+emph{Planck} lensing map and Wide-field Infrared Survey Explorer (emph{WISE}) galaxies. We fit $C_{L}^{phi G}$ to a power law of the form $p_{L}=a(L/L_{0})^{-b}$ with $a=2.15 times 10^{-8}$, $b=1.35$, $L_{0}=490$, and find $eta^{phi G}=0.94^{+0.04}_{-0.04}$, which is marginally lower, but in good agreement with $eta^{phi G}=1.00^{+0.02}_{-0.01}$, the best-fit amplitude for the cross-correlation of emph{Planck}-2015 CMB lensing and emph{WISE} galaxies over $sim67%$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $2500 {rm deg}^2$ field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا