ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering the unitary charge-conjugation operator of quantum field theory for particle-antiparticle using trapped ions and light fields in cavity QED

285   0   0.0 ( 0 )
 نشر من قبل Norton G. de almeida Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. G. de Almeida




اسأل ChatGPT حول البحث

We present a method to engineer the unitary charge conjugation operator, as given by quantum field theory, in the highly controlled context of quantum optics, thus allowing one to simulate the creation of charged particles with well-defined momenta simultaneously with their respective antiparticles. Our method relies on trapped ions driven by a laser field and interacting with a single mode of a light field in a high Q cavity.



قيم البحث

اقرأ أيضاً

We discuss the simulation of non-perturbative cavity-QED effects using systems of trapped ions. Specifically, we address the implementation of extended Dicke models with both collective dipole-field and direct dipole-dipole interactions, which repres ent a minimal set of models for describing light-matter interactions in the ultrastrong and deep-strong coupling regime. We show that this approach can be used in state-of-the-art trapped ion setups to investigate excitation spectra or the transition between sub- and superradiant ground states, which are currently not accessible in any other physical system. Our analysis also reveals the intrinsic difficulty of accessing this non-perturbative regime with larger numbers of dipoles, which makes the simulation of many-dipole cavity QED a particularly challenging test case for future quantum simulation platforms.
134 - J. Grond , W. Potz , A. Imamoglu 2008
A scheme for probabilistic entanglement generation between two distant single electron doped quantum dots, each placed in a high-Q microcavity, by detecting strong coherent light which has interacted dispersively with both subsystems and experienced Faraday rotation due to the spin selective trion transitions is discussed. In order to assess the applicability of the scheme for distant entanglement generation between atomic qubits proposed by T.D. Ladd et al. [New J. Phys. 8, 184 (2006)] to two distant quantum dots, one needs to understand the limitations imposed by hyperfine interactions of the quantum dot spin with the nuclear spins of the material and by non-identical quantum dots. Feasibility is displayed by calculating the fidelity for Bell state generation analytically within an approximate framework. The fidelity is evaluated for a wide range of parameters and different pulse lengths, yielding a trade-off between signal and decoherence, as well as a set of optimal parameters. Strategies to overcome the effect of non-identical quantum dots on the fidelity are examined and the timescales imposed by the nuclear spins are discussed, showing that efficient entanglement generation is possible with distant quantum dots. In this context, effects due to light hole transitions become important and have to be included. The scheme is discussed for one- as well as for two-sided cavities, where one must be careful with reflected light which carries spin information. The validity of the approximate method is checked by a more elaborate semiclassical simulation which includes trion formation.
Generalized quantum measurements are an important extension of projective or von Neumann measurements, in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two non-standard quant um measurements using cavity quantum electrodynamics (QED). The first measurement optimally and unabmiguously distinguishes between two non-orthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionisation detection of atoms, and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurement have only been realized on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons, but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.
Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of th e setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave system, and compare experimental measurements of the microwave near-fields with numerical simulations. Additionally, we present a method that utilizes oscillating magnetic-field gradients to detect micromotion induced by the ponderomotive radio-frequency potential in linear traps. Finally, we discuss the present limitations of microwave-driven two-ion entangling gates in our system.
The concept of generalized Gibbs ensembles (GGEs) has been introduced to describe steady states of integrable models. Recent advances show that GGEs can also be stabilized in nearly integrable quantum systems when driven by external fields and open. Here, we present a weakly dissipative dynamics that drives towards a steady-state GGE and is realistic to implement in systems of trapped ions. We outline the engineering of the desired dissipation by a combination of couplings which can be realized with ion-trap setups and discuss the experimental observables needed to detect a deviation from a thermal state. We present a novel mixed-species motional mode engineering technique in an array of micro-traps and demonstrate the possibility to use sympathetic cooling to construct many-body dissipators. Our work provides a blueprint for experimental observation of GGEs in open systems and opens a new avenue for quantum simulation of driven-dissipative quantum many-body problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا