ترغب بنشر مسار تعليمي؟ اضغط هنا

The Metallicities of the Broad Emission Line Regions in the Nitrogen-Loudest Quasars

113   0   0.0 ( 0 )
 نشر من قبل Jack Baldwin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the metallicity Z in the broad emission line regions (BELRs) of 43 SDSS quasars with the strongest N IV] and N III] emission lines. These N-Loud QSOs have unusually low black hole masses. We used the intensity ratio of N lines to collisionally-excited emission lines of other heavy elements to find metallicities in their BELR regions. We found that 7 of the 8 line-intensity ratios that we employed give roughly consistent metallicities as measured, but that for each individual QSO their differences from the mean of all metallicity measurements depends on the ionization potential of the ions that form the emission lines. After correcting for this effect, the different line-intensity ratios give metallicities that generally agree to within the 0.24 dex uncertainty in the measurements of the line-intensity ratios. The metallicities are very high, with mean log Z for the whole sample of 5.5 Z_sun and a maximum of 18 Z_sun. Our results argue against the possibility that the strong N lines represent an overabundance only of N but not of all heavy elements. They are compatible with either (1) the BELR gas has been chemically enriched by the general stellar population in the central bulge of the host galaxy but the Locally Optimally-emitting Cloud model used in the analysis needs some fine tuning, or (2) that instead this gas has been enriched by intense star formation on the very local scale of the active nucleus that has resulted in an abundance gradient within the BELR.



قيم البحث

اقرأ أيضاً

The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a superm assive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.
The intensity of the strong N V 1240 line relative to C IV 1549 or to He II 1640 has been proposed as an indicator of the metallicity of QSO broad emission line regions, allowing abundance measurements in a large number of QSOs out to the highest red shifts. Previously, it had been shown that the (normally) much weaker lines N III] 1750 and N IV] 1486 could be used in the same way. The redshift 1.96 QSO 0353-383 has long been known to have N III] and N IV] lines that are far stronger relative to Ly-alpha or C IV than in any other QSO. Because in this particular case these intercombination lines can be easily measured, this unusual object provides an ideal opportunity for testing whether the N V line is a valid abundance indicator. Using new observations of Q0353-383 made both with HST in the ultraviolet and from the ground in the visible passband, we find that intensity ratios involving the strengths of N V, N IV] and N III] relative to lines of He, C and O all indicate that nitrogen is overabundant relative to oxygen in Q0353-383 by a factor of ~15 compared to solar ratios. This agreement among the diagnostics supports the use of these lines for measuring BLR chemical abundances. If nitrogen behaves like a secondary element, such that N/O is proportional to O/H, then the extreme nitrogen enhancement in Q0353-383 implies a metallicity of ~15 times the solar value. Even if Q0353-383 represents an extreme outlier in the N/O proportional to O/H relation, the overall metallicity should still be at least five times solar. Unusually high metallicities in Q0353-383 might imply that we caught this object just as the gas-phase metallicity in the central part of its host galaxy has peaked, at a time when the interstellar gas supply is nearly exhausted and hence the fuel source for the central QSO is ready to shut off.
A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.
177 - Ravi Joshi 2012
We present the results of an optical photometric monitoring program of 10 extremely radio loud broad absorption line quasars (RL-BALQSOs) with radio-loudness parameter, R, greater than 100 and magnitude g_i < 19. Over an observing run of about 3.5-6. 5 hour we found a clear detection of variability for one of our 10 radio-loud BALQSOs with the INOV duty cycle of 5.1 per cent, while on including the probable variable cases, a higher duty cycle of 35.1 per cent is found; which are very similar to the duty cycle of radio quiet broad absorption line quasars (RQ-BALQSOs). This low duty cycle of clear variability per cent in radio-loud sub-class of BALQSOs can be understood under the premise where BALs outflow may arise from large variety of viewing angles from the jet axis or perhaps being closer to the disc plane.
Changing-look quasars are a new class of highly variable active galactic nuclei that have changed their spectral type over surprisingly short timescales of just a few years. The origin of this phenomenon is debated, but is likely to reflect some chan ge in the accretion flow. To investigate the disk-corona systems in these objects, we measure optical/UV-X-ray spectral indices ($alpha_{rm OX}$) and Eddington ratios ($lambda_{rm Edd}$) of ten previously-discovered changing-look quasars at two or more epochs. By comparing these data with simulated results based on the behavior of X-ray binaries, we find possible similarities in spectral indices below 1% Eddington ratio. We further investigate the Eddington ratios of changing-look quasars before and after their spectral type changes, and find that changing-look quasars cross the 1% Eddington ratio boundary when their broad emission lines disappear/emerge. This is consistent with the disk-wind model as the origin of broad emission lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا