ﻻ يوجد ملخص باللغة العربية
We propose a low-cost robotic optical survey aimed at $1-300$ m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily accessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving - trailed - asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-efficient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey) systems to be built around the world.
The survey of the nearby space and continuous monitoring of the Near Earth Objects (NEOs) and especially Near Earth Asteroids (NEAs) are essential for the future of our planet and should represent a priority for our solar system research and nearby s
Context: Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fr
The overwhelming majority of objects visible to LSST lie within the Galactic Plane. Though many previous surveys have avoided this region for fear of stellar crowding, LSSTs spatial resolution combined with its state-of-the-art Difference Image Analy
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative
Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hyper-velocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The pr