ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting-Based Search: Branching Heuristics for Constraint Satisfaction Problems

243   0   0.0 ( 0 )
 نشر من قبل Gilles Pesant
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing a search heuristic for constraint programming that is reliable across problem domains has been an important research topic in recent years. This paper concentrates on one family of candidates: counting-based search. Such heuristics seek to make branching decisions that preserve most of the solutions by determining what proportion of solutions to each individual constraint agree with that decision. Whereas most generic search heuristics in constraint programming rely on local information at the level of the individual variable, our search heuristics are based on more global information at the constraint level. We design several algorithms that are used to count the number of solutions to specific families of constraints and propose some search heuristics exploiting such information. The experimental part of the paper considers eight problem domains ranging from well-established benchmark puzzles to rostering and sport scheduling. An initial empirical analysis identifies heuristic maxSD as a robust candidate among our proposals.eWe then evaluate the latter against the state of the art, including the latest generic search heuristics, restarts, and discrepancy-based tree traversals. Experimental results show that counting-based search generally outperforms other generic heuristics.



قيم البحث

اقرأ أيضاً

Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how freq uently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k=3,4,5,6.
Message passing algorithms have proved surprisingly successful in solving hard constraint satisfaction problems on sparse random graphs. In such applications, variables are fixed sequentially to satisfy the constraints. Message passing is run after e ach step. Its outcome provides an heuristic to make choices at next step. This approach has been referred to as `decimation, with reference to analogous procedures in statistical physics. The behavior of decimation procedures is poorly understood. Here we consider a simple randomized decimation algorithm based on belief propagation (BP), and analyze its behavior on random k-satisfiability formulae. In particular, we propose a tree model for its analysis and we conjecture that it provides asymptotically exact predictions in the limit of large instances. This conjecture is confirmed by numerical simulations.
We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.
For a finite relational structure A, let CSP(A) denote the CSP instances whose constraint relations are taken from A. The resulting family of problems CSP(A) has been considered heavily in a variety of computational contexts. In this article, we cons ider this family from the perspective of property testing: given an instance of a CSP and query access to an assignment, one wants to decide whether the assignment satisfies the instance, or is far from so doing. While previous works on this scenario studied concrete templates or restricted classes of structures, this article presents comprehensive classification theorems. Our first contribution is a dichotomy theorem completely characterizing the structures A such that CSP(A) is constant-query testable: (i) If A has a majority polymorphism and a Maltsev polymorphism, then CSP(A) is constant-query testable with one-sided error. (ii) Else, testing CSP(A) requires a super-constant number of queries. Let $exists$CSP(A) denote the extension of CSP(A) to instances which may include existentially quantified variables. Our second contribution is to classify all structures A in terms of the number of queries needed to test assignments to instances of $exists$CSP(A), with one-sided error. More specifically, we show the following trichotomy: (i) If A has a majority polymorphism and a Maltsev polymorphism, then $exists$CSP(A) is constant-query testable with one-sided error. (ii) Else, if A has a $(k + 1)$-ary near-unanimity polymorphism for some $k geq 2$, and no Maltsev polymorphism then $exists$CSP(A) is not constant-query testable (even with two-sided error) but is sublinear-query testable with one-sided error. (iii) Else, testing $exists$CSP(A) with one-sided error requires a linear number of queries.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا