ﻻ يوجد ملخص باللغة العربية
Several experiments are underway to detect the cosmic redshifted 21-cm signal from neutral hydrogen from the Epoch of Reionization (EoR). Due to their very low signal-to-noise ratio, these observations aim for a statistical detection of the signal by measuring its power spectrum. We investigate the extraction of the variance of the signal as a first step towards detecting and constraining the global history of the EoR. Signal variance is the integral of the signals power spectrum, and it is expected to be measured with a high significance. We demonstrate this through results from a simulation and parameter estimation pipeline developed for the Low Frequency Array (LOFAR)-EoR experiment. We show that LOFAR should be able to detect the EoR in 600 hours of integration using the variance statistic. Additionally, the redshift ($z_r$) and duration ($Delta z$) of reionization can be constrained assuming a parametrization. We use an EoR simulation of $z_r = 7.68$ and $Delta z = 0.43$ to test the pipeline. We are able to detect the simulated signal with a significance of 4 standard deviations and extract the EoR parameters as $z_r = 7.72^{+0.37}_{-0.18}$ and $Delta z = 0.53^{+0.12}_{-0.23}$ in 600 hours, assuming that systematic errors can be adequately controlled. We further show that the significance of detection and constraints on EoR parameters can be improved by measuring the cross-variance of the signal by cross-correlating consecutive redshift bins.
We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift $approx$ 9.1 using new upper limits on the 21-cm power spectrum measured by the LOFAR radio-telescope and a prior on the ionized fraction at that
Future high redshift 21-cm experiments will suffer from a high degree of contamination, due both to astrophysical foregrounds and to non-astrophysical and instrumental effects. In order to reliably extract the cosmological signal from the observed da
The first generation of redshifted 21 cm detection experiments, carried out with arrays like LOFAR, MWA and GMRT, will have a very low signal-to-noise ratio per resolution element (sim 0.2). In addition, whereas the variance of the cosmological signa
We combine observational data on a dozen independent cosmic properties at high-$z$ with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolu
Detection of the 21-cm signal coming from the epoch of reionization (EoR) is challenging especially because, even after removing the foregrounds, the residual Stokes $I$ maps contain leakage from polarized emission that can mimic the signal. Here, we