ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares

95   0   0.0 ( 0 )
 نشر من قبل Daniel Ryan Mr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared to the predictions of an analytical 0-D hydrodynamic model. It is found that the model does not fit the observations well, but does provide a well defined lower limit on a flares total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy as calculated with GOES. This decay phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay phase heating in small flares. However, in the most energetic flares the decay phase heating inferred from the model can be several times greater than the peak thermal energy.



قيم البحث

اقرأ أيضاً

187 - J.K. Thalmann , Y. Su , M. Temmer 2015
The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fie lds served as a strong, also lateral, confinement for a series of large two-ribbon flares originating from the core of the active region. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this active region was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10^25 J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.
131 - H. Peter , S. Bingert , S. Kamio 2011
Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuabl e tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation.
Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D ti me dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.
97 - Galina G. Motorina 2017
The aim of the thesis is the study of properties of solar flares via reconstruction of energy distributions of accelerated/heated electrons, diagnostics of flare plasma based on EUV and X-ray observations, as well as the estimation of the thermal bal ance within the standard flare model. The X-ray data were obtained from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Russian solar observatory KORONAS-F (IRIS experiment). The EUV data were obtained from the Solar Dynamics Observatory / Atmospheric Imaging Assembly (SDO/AIA). In the first chapter a new technique is presented, which allowed to determine at first the photon spectra based on the KORONAS-F/IRIS observations and then to reconstruct the energy spectra of the emitting electrons using the random search method and the Tikhonov regularization method. In the second chapter the developed technique of simultaneously fitting the model differential emission measure functions (DEM) to RHESSI and SDO/AIA data is introduced, which allowed to infer the electron distribution from X-ray and EUV observations. The proposed method allows to reconstruct of both the spectra of accelerated/heated electrons and the basic parameters of the flare plasma, such as temperature, emission measure, total electron number density, and flare energy. In addition, the analytical function suitable for both DEM analysis and mean electron flux spectra in flares has been developed and applied, as well as kappa-distribution in the form of differential emission measure. The thermal balance and hard X-ray emission of coronal loops from different flare regions within the standard flare model is considered in the third chapter. This thesis is based on the next papers: Motorina et al., TePh, 2012, Motorina & Kontar, Ge&Ae, 2015, Battaglia et al., ApJ, 2015, Motorina et al., TePh, 2016, Tsap et al., Ge&Ae, 2016.
During late October 2014, active region NOAA 2192 caused an unusual high level of solar activity, within an otherwise weak solar cycle. While crossing the solar disk, during a period of 11 days, it was the source of 114 flares of GOES class C1.0 and larger, including 29 M- and 6 X-flares. Surprisingly, none of the major flares (GOES class M5.0 and larger) was accompanied by a coronal mass ejection, contrary to statistical tendencies found in the past. From modeling the coronal magnetic field of NOAA 2192 and its surrounding, we suspect that the cause of the confined character of the flares is the strong surrounding and overlying large-scale magnetic field. Furthermore, we find evidence for multiple magnetic reconnection processes within a single flare, during which electrons were accelerated to unusual high energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا