ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing

118   0   0.0 ( 0 )
 نشر من قبل Boby Joseph
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron-oxide nanoparticles have been synthesized by high temperature arc plasma route with different plasma currents and characterized for their structure, morphology and local atomic order. Fe K-edge x-ray absorption spectra reveal distinct local structure of the samples grown with different plasma currents. We have shown that the local disorder is higher for the higher plasma current grown samples that also have a larger average particle-size. The results provide useful information to control structural and morphological properties of nanoparticles grown by high temperature plasma synthesis process.



قيم البحث

اقرأ أيضاً

We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exp onent {beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO wustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.
In this work, we study the influence of the average crystallite size and dopant oxide on the reducibility of CeO2-based nanomaterials. Samples were prepared from commercial Gd2O3-, Sm2O3- and Y2O3-doped CeO2 powders by calcination at different temper atures ranging between 400 and 900C and characterized by X-ray powder diffraction, transmission electron microscopy and BET specific surface area. The reducibility of the samples was analyzed by temperature-programmed reduction and in situ dispersive X-ray absorption spectroscopy techniques. Our results clearly demonstrate that samples treated at lower temperatures, of smallest average crystallite size and highest specific surface areas, exhibit the best performance, while Gd2O3-doped ceria materials display higher reducibility than Sm2O3- and Y2O3-doped CeO2.
We present an x-ray absorption study of the dependence of the V oxidation state on the thickness of LaVO$_3$ (LVO) and capping LaAlO$_3$ (LAO) layers in the multilayer structure of LVO sandwiched between LAO. We found that the change of the valence o f V as a function of LAO layer thickness can be qualitatively explained by a transition between electronically reconstructed interfaces and a chemical reconstruction. The change as a function of LVO layer thickness is complicated by the presence of a considerable amount of V$^{4+}$ in the bulk of the thicker LVO layers.
We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particu lar, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.
We present an x-ray absorption study of the oxidation states of transition-metal-ions of LiMnO2 and its related materials, widely used as cathodes in Li-ion batteries. The comparison between the obtained spectrum and the configuration-interaction clu ster-model calculations showed that the Mn3+ in LiMnO2 is a mixture of the high-spin and low-spin states. We found that Li deficiencies occur in the case of Cr substitution, whereas there are no Li deficiencies in the case of Ni substitution. We conclude that the substitution of charge-transfer-type Ni or Cu is effective for LiMnO2 battery materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا