ﻻ يوجد ملخص باللغة العربية
Many of the electronic properties of high-temperature cuprate superconductors (HTSC) are strongly dependent on the number of charge carriers put into the CuO$_2$ planes (doping). Superconductivity appears over a dome-shaped region of the doping-temperature phase diagram. The highest critical temperature (Tc) is obtained for the so-called optimum doping. The doping mechanism is usually chemical; it can be done by cationic substitution. This is the case, for example, in La$_{2-x}$Sr$_x$CuO$_4$ where La3+ is replaced by Sr2+ thus adding a hole to the CuO$_2$ planes. A similar effect is achieved by adding oxygen as in the case of YBa$_2$Cu$_3$O$_{6+delta}$ where $delta$ represents the excess oxygen in the sample. In this paper we report on a different mechanism, one that enables the addition or removal of carriers from the surface of the HTSC. This method utilizes a self-assembled monolayer (SAM) of polar molecules adsorbed on the cuprate surface. In the case of optically active molecules, the polarity of the SAM can be modulated by shining light on the coated surface. This results in a light-induced modulation of the superconducting phase transition of the sample. The ability to control the superconducting transition temperature with the use of SAMs makes these surfaces practical for various devices such as switches and detectors based on high-Tc superconductors.
The cuprate high-temperature superconductors (HTSC) have been the subject of intense study for more than 30 years with no consensus yet on the underlying mechanism of the superconductivity. Conventional wisdom dictates that the mysterious and extraor
Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram i
The Meissner effect and the associated perfect bulk diamagnetism together with zero resistance and gap opening are characteristic features of the superconducting state. In the pseudogap state of cuprates unusual diamagnetic signals as well as anomalo
With the discovery of charge density waves (CDW) in most members of the cuprate high temperature superconductors, the interplay between superconductivity and CDW has become a key point in the debate on the origin of high temperature superconductivity
Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconduc