ترغب بنشر مسار تعليمي؟ اضغط هنا

The growth of torus link groups

159   0   0.0 ( 0 )
 نشر من قبل Yasushi Yamashita
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a finitely generated group with a finite generating set $S$. For $gin G$, let $l_S(g)$ be the length of the shortest word over $S$ representing $g$. The growth series of $G$ with respect to $S$ is the series $A(t) = sum_{n=0}^infty a_n t^n$, where $a_n$ is the number of elements of $G$ with $l_S(g)=n$. If $A(t)$ can be expressed as a rational function of $t$, then $G$ is said to have a rational growth function. We calculate explicitly the rational growth functions of $(p,q)$-torus link groups for any $p, q > 1.$ As an application, we show that their growth rates are Perron numbers.



قيم البحث

اقرأ أيضاً

We give several sufficient conditions for uniform exponential growth in the setting of virtually torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic group that is also acylindrically hyperbolic has uniform expone ntial growth. In addition, we provide a quasi-isometric characterizations of hierarchically hyperbolic groups without uniform exponential growth. To achieve this, we gain new insights on the structure of certain classes of hierarchically hyperbolic groups. Our methods give a new unified proof of uniform exponential growth for several examples of groups with notions of non-positive curvature. In particular, we obtain the first proof of uniform exponential growth for certain groups that act geometrically on CAT(0) cubical groups of dimension 3 or more. Under additional hypotheses, we show that a quantitative Tits alternative holds for hierarchically hyperbolic groups.
We introduce a quantitative characterization of subgroup alternatives modeled on the Tits alternative in terms of group laws and investigate when this property is preserved under extensions. We develop a framework that lets us expand the classes of g roups known to have locally uniform exponential growth to include extensions of either word hyperbolic or right-angled Artin groups by groups with locally uniform exponential growth. From this, we deduce that the automorphism group of a torsion-free one-ended hyperbolic group has locally uniform exponential growth. Our methods also demonstrate that automorphism groups of torsion-free one-ended toral relatively hyperbolic groups and certain right-angled Artin groups satisfy our quantitative subgroup alternative.
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali zes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer auto morphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
For an arbitrary positive integer $n$ and a pair $(p, q)$ of coprime integers, consider $n$ copies of a torus $(p,q)$ knot placed parallel to each other on the surface of the corresponding auxiliary torus: we call this assembly a torus $n$-link. We c ompute economical presentations of knot groups for torus links using the groupoid version of the Seifert--van Kampen theorem. Moreover, the result for an individual torus $n$-link is generalized to the case of multiple nested torus links, where we inductively include a torus link in the interior (or the exterior) of the auxiliary torus corresponding to the previous link. The results presented here have been useful in the physics context of classifying moduli space geometries of four-dimensional ${mathcal N}=2$ superconformal field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا