ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ia Supernovae with Bi-Modal Explosions Are Common -- Possible Smoking Gun for Direct Collisions of White-Dwarfs

326   0   0.0 ( 0 )
 نشر من قبل Subo Dong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Subo Dong




اسأل ChatGPT حول البحث

We discover clear doubly-peaked line profiles in 3 out of ~20 type Ia supernovae (SNe Ia) with high-quality nebular-phase spectra. The profiles are consistently present in three well-separated Co/Fe emission features. The two peaks are respectively blue-shifted and red-shifted relative to the host galaxies and are separated by ~5000 km/s. The doubly-peaked profiles directly reflect a bi-modal velocity distribution of the radioactive Ni56 in the ejecta that powers the emission of these SNe. Due to their random orientations, only a fraction of SNe with intrinsically bi-modal velocity distributions will appear as doubly-peaked spectra. Therefore SNe with intrinsic bi-modality are likely common, especially among the SNe in the low-luminosity part on the Philips relation (Delta m15(B) >~ 1.3; ~40% of all SNe Ia). Such bi-modality is naturally expected from direct collisions of white dwarfs (WDs) due to the detonation of both WDs and is demonstrated in a 3D 0.64 M_Sun-0.64 M_Sun WD collision simulation. In the future, with a large sample of nebular spectra and a comprehensive set of numerical simulations, the collision model can be unambiguously tested as the primary channel for type Ia SNe, and the distribution of nebular line profiles will either be a smoking gun or rule it out.



قيم البحث

اقرأ أيضاً

100 - Omar G. Benvenuto 2015
We study the occurrence of delayed SNe~Ia in the single degenerate (SD) scenario. We assume that a massive carbon-oxygen (CO) white dwarf (WD) accretes matter coming from a companion star, making it to spin at the critical rate. We assume uniform rot ation due to magnetic field coupling. The carbon ignition mass for non-rotating WDs is M_{ig}^{NR} approx 1.38 M_{odot}; while for the case of uniformly rotating WDs it is a few percent larger (M_{ig}^{R} approx 1.43 M_{odot}). When accretion rate decreases, the WD begins to lose angular momentum, shrinks, and spins up; however, it does not overflow its critical rotation rate, avoiding mass shedding. Thus, angular momentum losses can lead the CO WD interior to compression and carbon ignition, which would induce an SN~Ia. The delay, largely due to the angular momentum losses timescale, may be large enough to allow the companion star to evolve to a He WD, becoming undetectable at the moment of explosion. This scenario supports the occurrence of delayed SNe~Ia if the final CO WD mass is 1.38 M_{odot} < M < 1.43 M_{odot}. We also find that if the delay is longer than ~3 Gyr, the WD would become too cold to explode, rather undergoing collapse.
Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have c oalesced to form a single compact object. Here we study such peri-merger detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to super-Chandrasekhar mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of 2 with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. Despite the large variation with viewing angle, the set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B-band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.
Type Ia supernovae (SNe) are thought to originate from the thermonuclear explosions of carbon-oxygen (CO) white dwarfs (WDs). The proposed progenitors of standard type Ia SNe have been studied for decades and can be, generally, divided into explosion s of CO WDs accreting material from stellar non-degenerate companions (single-degenerate; SD models), and those arising from the explosive interaction of two CO WDs (double-degenerate; DD models). However, current models for the progenitors of such SNe fail to reproduce the diverse properties of the observed explosions, nor do they explain the inferred rates and the characteristics of the observed populations of type Ia SNe and their expected progenitors. Here we show that the little-studied mergers of CO-WDs with hybrid Helium-CO (He-CO) WDs can provide for a significant fraction of the normal type Ia SNe. Here we use detailed thermonuclear-hydrodynamical and radiative-transfer models to show that a wide range of mergers of CO WDs with hybrid He-CO WDs can give rise to normal type Ia SNe. We find that such He-enriched mergers give rise to explosions for which the synthetic light-curves and spectra resemble those of observed type Ia SNe, and in particular, they can produce a wide range of peak-luminosities, MB(MR)~ 18.4 to 19.2 (~ 18.5 to 19:45), consistent with those observed for normal type Ia SNe. Moreover, our population synthesis models show that, together with the contribution from mergers of massive double CO-WDs (producing the more luminous SNe), they can potentially reproduce the full range of type Ia SNe, their rate and delay-time distribution.
Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SN Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, t he exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multi-dimensional simulations of ``tamped SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics, and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale-height of the disk, which depends sensitively on the binary mass ratio, and the total ${}^{56}$Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant, and show that a longer time delay between merger and explosion probably leads to larger ${}^{56}$Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical ``tamped SN Ia for explaining the class of ``super-Chandrasekhar SN Ia.
The carbon-oxygen white dwarf (CO WD) + He star channel has been thought to be one of the promising scnarios to produce young type Ia supernovae (SNe Ia). Previous studies found that if the mass-accretion rate is greater than a critical value, the He -accreting CO WD will undergo inwardly propagating (off-centre) carbon ignition when it increases its mass close to the Chandrasekhar limit. The inwardly propagating carbon flame was supposed to reach the centre by previous works, leading to the production of an oxygen-neon (ONe) WD that may collapse into a neutron star but not an SN Ia. However, it is still uncertain how the carbon flame propagates under the effect of mixing mechanisms. In the present work, we aim to investigate the off-centre carbon burning of the He-accreting CO WDs by considering the effect of convective mixing. We found that the temperature of the flame is high enough to burn the carbon into silicon-group elements in the outer part of the CO core even if the convective overshooting is considered, but the flame would quench somewhere inside the WD, resulting in the formation of a C-O-Si WD. Owing to the inefficiency of thermohaline mixing, the C-O-Si WD may explode as an SN Ia if it continues to grow in mass. Our radiation transfer simulations show that the SN ejecta with the silicon-rich outer layer will form high-velocity absorption lines in Si II, leading to some similarities to a class of the high-velocity SNe Ia in the spectral evolution. We estimate that the birthrate of SNe Ia with Si-rich envelope is ~ 10^(-4)/yr in our galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا