ترغب بنشر مسار تعليمي؟ اضغط هنا

The Atlas3D project - XXVI. HI discs in real and simulated fast and slow rotators

181   0   0.0 ( 0 )
 نشر من قبل Paolo Serra
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simulations have difficulties reproducing the HI properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating HI. This establishes the HI properties of ETGs as a novel challenge to simulations.



قيم البحث

اقرأ أيضاً

For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By c ombining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy as observed in the case of slow rotators. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few L_X,gas-deficient slow rotators also happen to be relatively flat, the observed L_X,gas deficiency in these objects would support the hypothesis whereby flatter galaxies have a harder time in retaining their hot gas. We discuss the implications that a different hot-gas content could have on the fate of both acquired and internally-produced gaseous material, considering in particular how the L_X,gas deficiency of fast rotators would make them more capable to recycle the stellar-mass loss material into new stars than slow rotators. This is consistent with the finding that molecular gas and young stars are detected only in fast rotators in the Atlas3D sample, and that fast rotators tend to dustier than slow rotators. [Abridged]
We study the formation of early-type galaxies through mergers with a sample of 70 high-resolution (softening length < 60 pc and 12*10^6 particles) numerical simulations of binary mergers of disc galaxies and 16 simulations of ETG remergers. These sim ulations, designed to accompany observations and models conducted within the Atlas3D project, encompass various mass ratios (from 1:1 to 6:1), initial conditions and orbital parameters. The progenitor disc galaxies are spiral-like with bulge to disc ratios typical of Sb and Sc galaxies. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion (based on the lambda_R parameter): they preserve the structure of the input fast rotating spiral progenitors. They have intrinsic ellipticities larger than 0.5, cover intrinsic lambda_R values between 0.2 and 0.6, within the range of observed Fast Rotators. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Fast Rotators produced in major mergers have intermediate flattening, with ellipticities between 0.4 and 0.6. Most Slow Rotators formed in these binary disc mergers hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. Besides a handful of specific observed systems -- the counter-rotating discs (2-sigma galaxies) -- these therefore cannot reproduce the observed population of Slow Rotators in the nearby Universe. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in these binary mergers, but it also requires a retrograde spin for the earlier-type (Sb) progenitor galaxy with respect to the orbital angular momentum. (Abridged)
113 - L. M. Young , N. Scott , P. Serra 2013
We present a study of the cold gas contents of the Atlas3D early-type galaxies, in the context of their optical colours, near-UV colours, and Hbeta absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas-poor as prev iously thought, and at least 40% of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation), and removal. Molecular and atomic gas detection rates range from 10% to 34% in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50% to 70% in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses > 5e10 Msun, derived from dynamical models) are found to have HI masses up to M(HI)/Mstar ~ 0.06 and H_2 masses up to M(H$_2$)/Mstar ~ 0.01. Some 20% of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses <= 5e10 Msun, where such signatures are found in ~ 50% of H$_2$-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
122 - Matthieu Schaller 2016
We investigate the presence and importance of dark matter discs in a sample of 24 simulated Milky Way galaxies in the APOSTLE project, part of the EAGLE programme of hydrodynamic simulations in Lambda-CDM cosmology. It has been suggested that a dark disc in the Milky Way may boost the dark matter density and modify the velocity modulus relative to a smooth halo at the position of the Sun, with ramifications for direct detection experiments. From a kinematic decomposition of the dark matter and a real space analysis of all 24 halos, we find that only one of the simulated Milky Way analogues has a detectable dark disc component. This unique event was caused by a merger at late time with an LMC-mass satellite at very low grazing angle. Considering that even this rare scenario only enhances the dark matter density at the solar radius by 35% and affects the high energy tail of the dark matter velocity distribution by less than 1%, we conclude that the presence of a dark disc in the Milky Way is unlikely, and is very unlikely to have a significant effect on direct detection experiments.
Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius $R_e$, enclosed surface brightness $I_e$ and velocity dispersion $sigma_e$. Since $I_ e$ and $sigma_e$ are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which $I_e$ and $sigma_e$ can be used to estimate sizes $R_e$. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in $R_e$ is $sim 16%$, of which only $sim 9%$ is intrinsic. Removing galaxies with $M_*<10^{11}M_odot$ further reduces the observed scatter to $sim 13%$ ($sim 4%$ intrinsic). The observed scatter increases to the $sim 25%$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only $5%$ orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that $I_e$ and $sigma_e$ are nearly independent, whereas the $R_e-I_e$ and $R_e-sigma_e$ correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted. If we multiply $I_e$ by the global stellar mass-to-light ratio $M_*/L$ and we account for non-homology across the population by using Sersic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for $M_*/L$ gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا