ﻻ يوجد ملخص باللغة العربية
We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed at spacecraft STEREO-B, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of energetic ions and electrons in this event reached their maxima between the trailing-edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (Br) reversed its sense and the anisotropy of the flux also changed from sunward to anti-sunward between the two CIRs. Furthermore, there was an extended period of counter-streaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained for ACE and STEREO-A. We conjecture that these observations were due to a U-shape large scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.
In this paper we examine suprathermal He ions measured by the SIT (Suprathermal Ion Telescope) instrument associated with tilted corotating interaction regions (CIRs). We use observations of the two STEREO spacecraft (s/c) for the first 2.7 years of
We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996$-$2016 are used. At the time of appearance of the par
We present hydrodynamical models for Corotating Interaction Regions, which were used by Lobel (2007) to model the Discrete Absorption Components in HD 64760. We also discuss our failure to model the rotational modulations seen in the same star.
The Sun is an active star that can launch large eruptions of magnetised plasma into the heliosphere, called coronal mass ejections (CMEs). These ejections can drive shocks that accelerate particles to high energies, often resulting in radio emission
We investigated the relationship between the spectral structures of type II solar radio bursts in the hectometric and kilometric wavelength ranges and solar energetic particles (SEPs). To examine the statistical relationship between type II bursts an