ﻻ يوجد ملخص باللغة العربية
We present a method to infer reddenings and distances to stars, based only on their broad-band photometry, and show how this method can be used to produce a three-dimensional dust map of the Galaxy. Our method samples from the full probability density function of distance, reddening and stellar type for individual stars, as well as the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1) 3 pi survey, we demonstrate that our reddening estimates are unbiased, and accurate to ~0.13 mag in E(B-V) for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be constrained to within ~20% - 60%, although this range can vary, depending on the reddening of the star, the precise stellar type and its position on the sky. A further paper will present a 3D map of dust over the three quarters of the sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic science in the plane. The method we present is not limited to the passbands of the PS1 survey, but may be extended to incorporate photometry from other surveys, such as 2MASS, SDSS (where available), and in the future, LSST and Gaia.
We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination -30 degrees at a resolution of 7 to 14, and is based on the estimated distances and reddenings to
New data from the $textit{Gaia}$ satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyze the stellar density perturbations in the GD-1 stream an
The Pan-STARRS 1 (PS1) survey of M31 (PAndromeda) is designed to identify gravitational microlensing events, caused by bulge and disk stars (self-lensing) and by compact matter in the halos of M31 and the Milky Way (halo lensing, or lensing by MACHOs
A large sample of white dwarfs is selected by both proper motion and colours from the Pan-STARRS 1 3{pi} Steradian Survey Processing Version 2 to construct the White Dwarf Luminosity Functions of the discs and halo in the solar neighbourhood. Four-pa
We present new parallax measurements from the CFHT Infrared Parallax Program and the Pan-STARRS 3$pi$ Steradian Survey for the young ($approx150-300$ Myr) triple system VHS J125601.92$-$125723.9. This system is composed of a nearly equal-flux binary