ﻻ يوجد ملخص باللغة العربية
In this work we show that universal gauge vector fields can be localized on the recently proposed 5D thick tachyonic braneworld which involves a de Sitter cosmological background induced on the 3-brane. Namely, by performing a suitable decomposition of the vector field, the resulting 4D effective action corresponds to a massive gauge field, while the profile along the extra dimension obeys a Schroedinger-like equation with a Poeschl-Teller potential. It turns out that the massless zero mode of the gauge field is bound to the expanding 3-brane and allows us to recover the standard 4D electromagnetic phenomena of our world. Moreover, this zero mode is separated from the continuum of Kaluza-Klein (KK) modes by a mass gap determined by the scale of the expansion parameter. We also were able to analytically solve the corresponding Schroedinger-like equation for arbitrary mass, showing that KK massive modes asymptotically behave like plane waves as expected.
Braneworld models may yield interesting effects ranging from high-energy physics to cosmology, or even some low-energy physics. Their mode structure modifies standard results in these physical realms that can be tested and used to set bounds on the m
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thic
We study localization properties of fundamental fields which are coupled to one another through the gauge mechanism both in the original Randall-Sundrum (RS) and in the modified Randall-Sundrum (MRS) braneworld models: scalar-vector, vector-vector, a
We study the Hawking radiation of (4+n)-dimensional Schwarzschild black hole imbedded in the space-time with positive cosmological constant. The greybody and energy emission rates of scalars, fermions, bosons, and gravitons are calculated in the full
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and