ترغب بنشر مسار تعليمي؟ اضغط هنا

Routes to spatiotemporal chaos in Kerr optical frequency combs

213   0   0.0 ( 0 )
 نشر من قبل Yanne Chembo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs obtained through pumping an ultra-high quality whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.



قيم البحث

اقرأ أيضاً

The experimental realization of a Kerr frequency comb represented the convergence of research in materials, physics, and engineering, and this symbiotic relationship continues to underpin efforts in comb innovation today. While the initial focus deve loping cavity-based frequency combs relied on existing microresonator architectures and classic optical materials, in recent years, this trend has been disrupted. This paper reviews the latest achievements in frequency comb generation using resonant cavities, placing them within the broader historical context of the field. After presenting well-established material systems and device designs, the emerging materials and device architectures are examined. Specifically, the unconventional material systems as well as atypical device designs that have enabled tailored dispersion profiles and improved comb performance are compared to the current state of art. The remaining challenges and future outlook for the field of cavity-based frequency combs is evaluated.
Kerr optical frequency combs generated in a coherently driven Kerr nonlinear resonator has the potential for a wide range of applications. However, in a single cavity which is a widely adopted configuration for Kerr optical frequency combs generation , modulation instability is suppressed in normal dispersion regime and the pump-to-comb conversion efficiency is extremely low for a single dissipative Kerr soliton in anomalous dispersion regime. Dual-coupled cavities have been proposed to generate Kerr optical frequency combs in normal dispersion regime, and have potential to remarkably increase conversion efficiency for Kerr optical frequency combs. Here, we investigate modulation instability and Kerr optical frequency-comb formation in dual-coupled cavities. Based on solutions of the continuous-wave steady state, we obtain a quadric algebraic equation describing the modulation instability gain, and we find that it is intensely influenced by the group velocity mismatch between the two cavities. Our numerical simulations demonstrate that platicons can be generated via pump scanning scheme for the case that both the two cavities possess normal dispersion, and a single dissipative Kerr soliton can be generated in the cavity with anomalous dispersion while the dispersion of the other cavity is normal. Our analysis of modulation instability provides a powerful tool for Kerr optical frequency-comb generation via pump modulation and cavity detuning tuning scheme in dual-coupled cavities.
Kerr optical frequency combs with multi-gigahertz spacing have previously been demonstrated in chip-scale microresonators, with potential applications in coherent communication, spectroscopy, arbitrary waveform generation, and radio frequency photoni c oscillators. In general, the harmonics of a frequency comb are identically polarized in a single microresonator. In this work, we report that one comb in one polarization is generated by an orthogonally polarized soliton comb and two low-noise, orthogonally polarized combs interact with each other and exist simultaneously in a single microresonator. The second comb generation is attributed to the strong cross-phase modulation with the orthogonally polarized soliton comb and the high peak power of the intracavity soliton pulse. Experimental results show that a second frequency comb is excited even when a continuous wave light as a seed-with power as low as 0.1 mW-is input, while its own power level is below the threshold of comb generation. Moreover, the second comb has a concave envelope, which is different from the sech2 envelope of the soliton comb. This is due to the frequency mismatch between the harmonics and the resonant frequency. We also find that the repetition rates of these two combs coincide, although two orthogonal resonant modes are characterized by different free spectral ranges.
We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences o f output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex-degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.
Recent experiments have demonstrated the generation of widely-spaced parametric sidebands that can evolve into clustered optical frequency combs in Kerr microresonators. Here we describe the physics that underpins the formation of such clustered comb states. In particular, we show that the phase-matching required for the initial sideband generation is such that (at least) one of the sidebands experiences anomalous dispersion, enabling that sideband to drive frequency comb formation via degenerate and non-degenerate four-wave mixing. We validate our proposal through a combination of experimental observations made in a magnesium-fluoride microresonator and corresponding numerical simulations. We also investigate the coherence properties of the resulting clustered frequency combs. Our findings provide valuable insights on the generation and dynamics of widely-spaced parametric sidebands and clustered frequency combs in Kerr microresonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا