ﻻ يوجد ملخص باللغة العربية
The statistics of random-matrix spectra can be very sensitive to the unfolding procedure that separates global from local properties. In order to avoid the introduction of possible artifacts, recently it has been applied to ergodic ensembles of Random Matrix Theory (RMT) the singular value decomposition (SVD) method, based on normal mode analysis, which characterizes the long-range correlations of the spectral fluctuations in a direct way without performing any unfolding. However, in the case of more general ensembles, the ergodicity property is often broken leading to ambiguities between spectrum-unfolded and ensemble-unfolded fluctuation statistics. Here, we apply SVD to a disordered random-matrix ensemble with tunable nonergodicity, as a mathematical framework to characterize the nonergodicity. We show that ensemble-averaged and individual-spectrum averaged statistics are calculated consistently using the same normal mode basis, and the nonergodicity is explained as a breakdown of this common basis.
Theory of Random Matrix Ensembles have proven to be a useful tool in the study of the statistical distribution of energy or transmission levels of a wide variety of physical systems. We give an overview of certain q-generalizations of the Random Matr
We construct a very general family of characteristic functions describing Random Matrix Ensembles (RME) having a global unitary invariance, and containing an arbitrary, one-variable probability measure which we characterize by a `spread function. Var
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). For single particle systems with fully chaotic classical counterparts, the pro
The concept of fidelity has been introduced to characterize the stability of a quantum-mechanical system against perturbations. The fidelity amplitude is defined as the overlap integral of a wave packet with itself after the development forth and bac
Several spectral fluctuation measures of random matrix theory (RMT) have been applied in the study of spectral properties of networks. However, the calculation of those statistics requires performing an unfolding procedure, which may not be an easy t