ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter distribution function and Halo Thermalization from the Eddington equation in Galaxies

118   0   0.0 ( 0 )
 نشر من قبل Hector de Vega J
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with Warm DM. With these methods we find: (i) Cored density profiles behaving quadratically for small distances rho(r) r -> 0 = rho(0) - K r^2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r < 3 r_h where r_h is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding an ideal DM gas equation of state with local temperature T(r) = m v^2(r)/3. T(r) turns to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T_0 for r < 3 ; r_h, (b) a space dependent temperature T(r) for 3 r_h < r < R_{virial}, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r < R_{virial}. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.



قيم البحث

اقرأ أيضاً

In this work we model galactic halos describing the dark matter as a non zero pressure fluid and derive, not impose, a dark matter equation of state by using observational data of the rotation curves of galaxies. In order to reach hydrostatic equilib rium, as expected for the halo, it is mandatory that dark fluids pressure should not be zero. The equation of state is obtained by solving the matter-geometry system of equations assuming different dark matter density or rotational velocity profiles. The resulting equations of state are, in general, different to a barotropic equation of state. The free parameters of the equation of state are fixed by fitting the observed rotational velocities of a set of galaxies.
142 - Michele Maggiore 2009
In excursion set theory the computation of the halo mass function is mapped into a first-passage time process in the presence of a barrier, which in the spherical collapse model is a constant and in the ellipsoidal collapse model is a fixed function of the variance of the smoothed density field. However, N-body simulations show that dark matter halos grow through a mixture of smooth accretion, violent encounters and fragmentations, and modeling halo collapse as spherical, or even as ellipsoidal, is a significant oversimplification. We propose that some of the physical complications inherent to a realistic description of halo formation can be included in the excursion set theory framework, at least at an effective level, by taking into account that the critical value for collapse is not a fixed constant $delta_c$, as in the spherical collapse model, nor a fixed function of the variance $sigma$ of the smoothed density field, as in the ellipsoidal collapse model, but rather is itself a stochastic variable, whose scatter reflects a number of complicated aspects of the underlying dynamics. Solving the first-passage time problem in the presence of a diffusing barrier we find that the exponential factor in the Press-Schechter mass function changes from $exp{-delta_c^2/2sigma^2}$ to $exp{-adelta_c^2/2sigma^2}$, where $a=1/(1+D_B)$ and $D_B$ is the diffusion coefficient of the barrier. The numerical value of $D_B$, and therefore the corresponding value of $a$, depends among other things on the algorithm used for identifying halos. We discuss the physical origin of the stochasticity of the barrier and we compare with the mass function found in N-body simulations, for the same halo definition.[Abridged]
126 - Michele Maggiore 2009
We compute the effect of primordial non-Gaussianity on the halo mass function, using excursion set theory. In the presence of non-Gaussianity the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-markovi an and beside local terms that generalize Press-Schechter (PS) theory, there are also memory terms, whose effect on the mass function can be computed using the formalism developed in the first paper of this series. We find that, when computing the effect of the three-point correlator on the mass function, a PS-like approach which consists in neglecting the cloud-in-cloud problem and in multiplying the final result by a fudge factor close to 2, is in principle not justified. When computed correctly in the framework of excursion set theory, in fact, the local contribution vanishes (for all odd-point correlators the contribution of the image gaussian cancels the Press-Schechter contribution rather than adding up), and the result comes entirely from non-trivial memory terms which are absent in PS theory. However it turns out that, in the limit of large halo masses, where the effect of non-Gaussianity is more relevant, these memory terms give a contribution which is the the same as that computed naively with PS theory, plus subleading terms depending on derivatives of the three-point correlator. We finally combine these results with the diffusive barrier model developed in the second paper of this series, and we find that the resulting mass function reproduces recent N-body simulations with non-Gaussian initial conditions, without the introduction of any ad hoc parameter.
In this paper we present a new scenario where massive Primordial Black Holes (PBH) are produced from the collapse of large curvature perturbations generated during a mild waterfall phase of hybrid inflation. We determine the values of the inflaton po tential parameters leading to a PBH mass spectrum peaking on planetary-like masses at matter-radiation equality and producing abundances comparable to those of Dark Matter today, while the matter power spectrum on scales probed by CMB anisotropies agrees with Planck data. These PBH could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and micro-lensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultra-luminous X-rays sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a swiss-cheese like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.
107 - Tommi Tenkanen 2019
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا