ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant zero field cooled spontaneous exchange bias effect in phase separated La1.5Sr0.5CoMnO6

131   0   0.0 ( 0 )
 نشر من قبل A. Venimadhav
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a giant zero field cooled exchange bias (ZEB) effect (~0.65 T) in La1.5Sr0.5CoMnO6 sample. Magnetic study has revealed a reentrant spin glass ~90 K, phase separation to spin glass and ferromagnetic phases below 50 K and canted antiferromagnetic transition ~10 K. A small conventional exchange bias (CEB) is established with the advent of spontaneous phase separation down to 10 K. Giant ZEB and enhanced CEB effects are found only below 10 K and are attributed to the large unidirectional anisotropy at the interface of isothermally field induced ferromagnetic phase and canted antiferromagnetic background.



قيم البحث

اقرأ أيضاً

Magnetic properties of A2BBO6 (A = rare or alkaline earth ions; B,B = transition metal ions) double perovskites are of great interest due to their potential spintronic applications. Particularly fascinating is the zero field cooled exchange bias (ZEB ) effect observed for the hole doped La2-xAxCoMnO6 polycrystalline samples. In this work we synthesize La2CoMnO6, La1.5Ca0.5CoMnO6, and La1.5Sr0.5CoMnO6 single crystals by the floating zone method and study their magnetic behavior. The three materials are ferromagnetic. Surprisingly, we observe no zero or even conventional exchange bias effect for the Ca and Sr doped single crystals, in sharp contrast to polycrystalline samples. This absence indicates that the lack of grain boundaries and spin glass-like behavior, not observed in our samples, might be key ingredients for the spontaneous exchange bias phenomena seen in polycrystalline samples.
In the zero-field-cooled exchange bias (ZEB) effect the unidirectional magnetic anisotropy is set at low temperatures even when the system is cooled in the absence of external magnetic field. La$_{1.5}$Sr$_{0.5}$CoMnO$_{6}$ stands out as presenting t he largest ZEB reported so far, while for La$_{1.5}$Ca$_{0.5}$CoMnO$_{6}$ the exchange bias field ($H_{EB}$) is one order of magnitude smaller. Here we show that La$_{1.5}$Ba$_{0.5}$CoMnO$_{6}$ also exhibits a pronounced shift of its magnetic hysteresis loop, with intermediate $H_{EB}$ value in respect to Ca- and Sr-doped samples. In order to figure out the microscopic mechanisms responsible for this phenomena, these compounds were investigated by means of synchrotron X-ray powder diffraction, Raman spectroscopy, muon spin rotation and relaxation, AC and DC magnetization, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The parent compound La$_{2}$CoMnO$_{6}$ was also studied for comparison, as a reference of a non-ZEB material. Our results show that the Ba-, Ca- and Sr-doped samples present a small amount of phase segregation, and that the ZEB effect is strongly correlated to the systems structure. We also observed that mixed valence states Co$^{2+}$/Co$^{3+}$ and Mn$^{4+}$/Mn$^{3+}$ are already present at the La$_{2}$CoMnO$_{6}$ parent compound, and that Ba$^{2+}$/Ca$^{2+}$/Sr$^{2+}$ partial substitution at La$^{3+}$ site leads to a large increase of Co average valence, with a subtle augmentation of Mn formal valence. Estimates of the Co and Mn valences from the $L$-edge XAS indicate the presence of oxygen vacancies in all samples (0.05$leq delta leq$0.1). Our XMCD results show a great decrease of Co moment for the doped compounds, and indicate that the shift of the hysteresis curves for these samples is related to uncompensated antiferromagnetic coupling between Co and Mn.
In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles.
145 - M. Patra , M. Thakur , S. Majumdar 2008
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetiz ation exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around sim 20 and ~ 40 AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.
We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming dimer and cluster morphologies, with the clusters showing much stronger EB in compari son with the dimers. The EB effect develops due to the presence of stress in the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte-Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and open up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا