ﻻ يوجد ملخص باللغة العربية
This work reports the design and analysis of an n-type tunneling field effect transistor based on InN. The tunneling current is evaluated from the fundamental principles of quantum mechanical tunneling and semiclassical carrier transport. We investigate the RF performance of the device. High transconductance of 2 mS/um and current gain cut-off frequency of around 460 GHz makes the device suitable for THz applications. A significant reduction in gate to drain capacitance is observed under relatively higher drain bias. In this regard, the avalanche breakdown phenomenon in highly doped InN junctions is analyzed quantitatively for the first time and is compared to that of Si and InAs.
We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm,
Reconfigurable magnetic tunnel diodes and transistors are a new concept in spintronics. The realization of such a device requires the use of materials with unique spin-dependent electronic properties such as half-metallic magnets (HMMs) and spin-gapl
The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si
Tunneling field-effect transistors (TFETs) based on 2D materials are promising steep sub-threshold swing (SS) devices due to their tight gate control. There are two major methods to create the tunnel junction in these 2D TFETs: electrical and chemica
The measurements of the high - temperature current - voltage characteristics of MoS2 thin - film transistors show that the devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold