ﻻ يوجد ملخص باللغة العربية
A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended self-nonlinear interactions. The {em critical/} wavenumbers at which the nonlinear frequencies are comparable with the linear frequencies agree with the {em separation/} wavenumbers between the weak and strong turbulence spectra. We also confirm the validity of our analytical representation of the separation wavenumbers through comparison with the results of direct numerical simulations by changing the material parameters of a vibrating plate.
Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations a
The Random Phase and Amplitude Formalism (RPA) has significantly extended the scope of weak turbulence studies. Because RPA does not assume any proximity to the Gaussianity in the wavenumber space, it can predict, for example, how the fluctuation of
A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the Foppl-von Karman (FvK) equation. The representation enables energy decomposition analysis in the wav
We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser
We suggest a minimal model for the 3D turbulent energy spectra in superfluids, based on their two-fluid description. We start from the Navier-Stokes equation for the normal fluid and from the coarse-grained hydrodynamic equation for the superfluid co