ﻻ يوجد ملخص باللغة العربية
The quantum statistics of atoms is typically observed in the behavior of an ensemble via macroscopic observables. However, quantum statistics modifies the behavior of even two particles, inducing remarkable consequences that are at the heart of quantum science. Here we demonstrate near-complete control over all the internal and external degrees of freedom of two laser-cooled 87Rb atoms trapped in two optical tweezers. This full controllability allows us to implement a massive-particle analog of a Hong-Ou-Mandel interferometer where atom tunneling plays the role of a photon beamsplitter. We use the interferometer to probe the effect of quantum statistics on the two-atom dynamics under tunable initial conditions, chosen to adjust the degree of atomic indistinguishability. Our work thereby establishes laser-cooled atoms in optical tweezers as a new route to bottom-up engineering of scalable, low-entropy quantum systems.
In this paper, we revisit the well-known Hong-Ou-Mandel (HOM) effect in which two photons, which meet at a beamsplitter, can interfere destructively, leading to null in coincidence counts. In a standard HOM measurement, the coincidence counts across
The edge states of a two-dimensional topological insulator are characterized by their helicity, a very remarkable property which is related to the time-reversal symmetry and the topology of the underlying system. We theoretically investigate a Hong-O
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop
Hong-Ou-Mandel interference, the fact that identical photons that arrive simultaneously on different input ports of a beam splitter bunch into a common output port, can be used to measure optical delays between different paths. It is generally assume
Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both the linear and the nonlinear interferences can provide information about the light statistics an underlying detail of the light-matter interac