ﻻ يوجد ملخص باللغة العربية
The parameter space of the phenomenological MSSM (pMSSM) is explored by means of Markov Chain Monte Charlo (MCMC) methods, taking into account the latest LHC results on the Higgs signal at 125 GeV in addition to relevant low-energy observables and LEP constraints. We use a Bayesian approach to derive posterior densities for the parameters and observables of interests. We find in particular that the Higgs measurements have a significant impact on the parameters mu and tan beta due to radiative corrections to the bottom Yukawa coupling. We show moreover the impact of the most recent dark matter measurements on the probability distributions, and we discuss prospects for the next run of the LHC at 13-14 TeV.
The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymme
We describe a hybrid framework for electroweak symmetry breaking (EWSB), in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces an unconstrained scalar (i.e., acts as fundamental but not the SM field) and a
We discuss NMSSM scenarios in which the lightest Higgs boson $h_1$ is consistent with the small LEP excess at about 98 GeV in $e^+e^- to Zh$ with $hto banti b$ and the heavier Higgs boson $h_2$ has the primary features of the LHC Higgs-like signals a
We interpret within the phenomenological MSSM (pMSSM) the results of SUSY searches published by the CMS collaboration based on the first ~1 fb^-1 of data taken during the 2011 LHC run at 7 TeV. The pMSSM is a 19-dimensional parametrization of the MSS
We examine GUT-scale NMSSM scenarios in which {it both} $h_1$ and $h_2$ lie in the 123 -- 128 GeV mass range. Very substantially enhanced $gammagamma$ and other rates are possible. Broadened mass peaks are natural.