ترغب بنشر مسار تعليمي؟ اضغط هنا

The phenomenological MSSM in view of the 125 GeV Higgs data

175   0   0.0 ( 0 )
 نشر من قبل Beranger Dumont
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The parameter space of the phenomenological MSSM (pMSSM) is explored by means of Markov Chain Monte Charlo (MCMC) methods, taking into account the latest LHC results on the Higgs signal at 125 GeV in addition to relevant low-energy observables and LEP constraints. We use a Bayesian approach to derive posterior densities for the parameters and observables of interests. We find in particular that the Higgs measurements have a significant impact on the parameters mu and tan beta due to radiative corrections to the bottom Yukawa coupling. We show moreover the impact of the most recent dark matter measurements on the probability distributions, and we discuss prospects for the next run of the LHC at 13-14 TeV.



قيم البحث

اقرأ أيضاً

The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymme tric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to $sim$ 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a $W$ gauge boson and a pair of $tau$s.
254 - Shaouly Bar-Shalom 2013
We describe a hybrid framework for electroweak symmetry breaking (EWSB), in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces an unconstrained scalar (i.e., acts as fundamental but not the SM field) and a strongly coupled doublet of heavy quarks with a mass around 500 GeV, which forms a condensate at a compositeness scale Lambda ~ O(1) TeV. This setup is matched at that scale to a tightly constrained hybrid two Higgs doublet model, where both the composite and unconstrained scalars participate in EWSB. This allows us to get a good candidate for the recently observed 125 GeV scalar which has properties very similar to the Standard Model Higgs. The heavier (mostly composite) CP-even scalar has a mass around 500 GeV, while the pseudoscalar and the charged Higgs particles have masses in the range 200 -300 GeV.
We discuss NMSSM scenarios in which the lightest Higgs boson $h_1$ is consistent with the small LEP excess at about 98 GeV in $e^+e^- to Zh$ with $hto banti b$ and the heavier Higgs boson $h_2$ has the primary features of the LHC Higgs-like signals a t 125 GeV, including an enhanced $gammagamma$ rate. Verification or falsification of the 98 GeV $h_1$ may be possible at the LHC during the 14 TeV run. The detection of the other NMSSM Higgs bosons at the LHC and future colliders is also discussed, as well as dark matter properties of the scenario under consideration.
236 - S. Sekmen , S. Kraml , J. Lykken 2011
We interpret within the phenomenological MSSM (pMSSM) the results of SUSY searches published by the CMS collaboration based on the first ~1 fb^-1 of data taken during the 2011 LHC run at 7 TeV. The pMSSM is a 19-dimensional parametrization of the MSS M that captures most of its phenomenological features. It encompasses, and goes beyond, a broad range of more constrained SUSY models. Performing a global Bayesian analysis, we obtain posterior probability densities of parameters, masses and derived observables. In contrast to constraints derived for particular SUSY breaking schemes, such as the CMSSM, our results provide more generic conclusions on how the current data constrain the MSSM.
We examine GUT-scale NMSSM scenarios in which {it both} $h_1$ and $h_2$ lie in the 123 -- 128 GeV mass range. Very substantially enhanced $gammagamma$ and other rates are possible. Broadened mass peaks are natural.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا