ﻻ يوجد ملخص باللغة العربية
We use a simple field theory model to investigate the role of the nucleon spin for the magnetic sum rules associated with the low-lying collective scissors mode in deformed nuclei. Various constraints from rotational symmetry are elucidated and discussed. We put special emphasis on the coupling of the spin part of the M1 operator to the low lying collective modes, and investigate how this coupling changes the sum rules.
The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities to describe the rotational sta
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon $E_A(delta)$ calculated in the full range of spin p
We present a minimal nuclear energy density functional (NEDF) called SeaLL1 that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by 7 significant phenomenological parameters, each related to a specific nucle
We discuss two conditions needed for correct computation of $2 u betabeta$ nuclear matrix-elements within the realistic shell-model framework. An algorithm in which intermediate states are treated based on Whiteheads moment method is inspected, by ta
We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Becaus