ﻻ يوجد ملخص باللغة العربية
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial Cosmic Microwave Background (CMB) and thereby induces new, small-scale $B$-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity $E$- and $B$-mode polarization mapped over $sim30$ square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing $B$-modes is found at 4.2$sigma$ (stat.+sys.) significance. The amplitude of matter fluctuations is measured with a precision of $27%$, and is found to be consistent with the Lambda Cold Dark Matter ($Lambda$CDM) cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing $B$-mode signal in searches for primordial gravitational waves.
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 which sur
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universes entire history of grav
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest
We report an improved measurement of the cosmic microwave background (CMB) $B$-mode polarization power spectrum with the POLARBEAR experiment at 150 GHz. By adding new data collected during the second season of observations (2013-2014) to re-analyzed
We present a measurement of the cosmic microwave background (CMB) lensing potential using 500 deg$^2$ of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater t