ﻻ يوجد ملخص باللغة العربية
The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO$_{6.67}$ (YBCO$_{6.75}$) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal
The application of large magnetic fields ($B sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($
X-ray diffraction measurements show that the high-temperature superconductor YBa$_2$Cu$_3$O$_{6.54}$, with ortho-II oxygen order, has charge density wave order (CDW) in the absence of an applied magnetic field. The dominant wavevector of the CDW is $
The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active l