ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

165   0   0.0 ( 0 )
 نشر من قبل Julian Ibarz
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unified approach that integrates these three steps via the use of a deep convolutional neural network that operates directly on the image pixels. We employ the DistBelief implementation of deep neural networks in order to train large, distributed neural networks on high quality images. We find that the performance of this approach increases with the depth of the convolutional network, with the best performance occurring in the deepest architecture we trained, with eleven hidden layers. We evaluate this approach on the publicly available SVHN dataset and achieve over $96%$ accuracy in recognizing complete street numbers. We show that on a per-digit recognition task, we improve upon the state-of-the-art, achieving $97.84%$ accuracy. We also evaluate this approach on an even more challenging dataset generated from Street View imagery containing several tens of millions of street number annotations and achieve over $90%$ accuracy. To further explore the applicability of the proposed system to broader text recognition tasks, we apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the most secure reverse turing tests that uses distorted text to distinguish humans from bots. We report a $99.8%$ accuracy on the hardest category of reCAPTCHA. Our evaluations on both tasks indicate that at specific operating thresholds, the performance of the proposed system is comparable to, and in some cases exceeds, that of human operators.



قيم البحث

اقرأ أيضاً

The current paradigm in privacy protection in street-view images is to detect and blur sensitive information. In this paper, we propose a framework that is an alternative to blurring, which automatically removes and inpaints moving objects (e.g. pede strians, vehicles) in street-view imagery. We propose a novel moving object segmentation algorithm exploiting consistencies in depth across multiple street-view images that are later combined with the results of a segmentation network. The detected moving objects are removed and inpainted with information from other views, to obtain a realistic output image such that the moving object is not visible anymore. We evaluate our results on a dataset of 1000 images to obtain a peak noise-to-signal ratio (PSNR) and L1 loss of 27.2 dB and 2.5%, respectively. To ensure the subjective quality, To assess overall quality, we also report the results of a survey conducted on 35 professionals, asked to visually inspect the images whether object removal and inpainting had taken place. The inpainting dataset will be made publicly available for scientific benchmarking purposes at https://research.cyclomedia.com
179 - A. Sufian 2019
Images of handwritten digits are different from natural images as the orientation of a digit, as well as similarity of features of different digits, makes confusion. On the other hand, deep convolutional neural networks are achieving huge success in computer vision problems, especially in image classification. BDNet is a densely connected deep convolutional neural network model used to classify (recognize) Bengali handwritten numeral digits. It is end-to-end trained using ISI Bengali handwritten numeral dataset. During training, untraditional data preprocessing and augmentation techniques are used so that the trained model works on a different dataset. The model has achieved the test accuracy of 99.775%(baseline was 99.40%) on the test dataset of ISI Bengali handwritten numerals. So, the BDNet model gives 62.5% error reduction compared to previous state-of-the-art models. Here we have also created a dataset of 1000 images of Bengali handwritten numerals to test the trained model, and it giving promising results. Codes, trained model and our own dataset are available at: {https://github.com/Sufianlab/BDNet}.
We present a neural network model - based on CNNs, RNNs and a novel attention mechanism - which achieves 84.2% accuracy on the challenging French Street Name Signs (FSNS) dataset, significantly outperforming the previous state of the art (Smith16), w hich achieved 72.46%. Furthermore, our new method is much simpler and more general than the previous approach. To demonstrate the generality of our model, we show that it also performs well on an even more challenging dataset derived from Google Street View, in which the goal is to extract business names from store fronts. Finally, we study the speed/accuracy tradeoff that results from using CNN feature extractors of different depths. Surprisingly, we find that deeper is not always better (in terms of accuracy, as well as speed). Our resulting model is simple, accurate and fast, allowing it to be used at scale on a variety of challenging real-world text extraction problems.
238 - R. Maqsood , UI. Bajwa , G. Saleem 2021
Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence o f anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1)There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation.
215 - Mengyu Chen 2021
CNN model is a popular method for imagery analysis, so it could be utilized to recognize handwritten digits based on MNIST datasets. For higher recognition accuracy, various CNN models with different fully connected layer sizes are exploited to figur e out the relationship between the CNN fully connected layer size and the recognition accuracy. Inspired by previous pruning work, we performed pruning methods of distinctiveness on CNN models and compared the pruning performance with NN models. For better pruning performances on CNN, the effect of angle threshold on the pruning performance was explored. The evaluation results show that: for the fully connected layer size, there is a threshold, so that when the layer size increases, the recognition accuracy grows if the layer size smaller than the threshold, and falls if the layer size larger than the threshold; the performance of pruning performed on CNN is worse than on NN; as pruning angle threshold increases, the fully connected layer size and the recognition accuracy decreases. This paper also shows that for CNN models trained by the MNIST dataset, they are capable of handwritten digit recognition and achieve the highest recognition accuracy with fully connected layer size 400. In addition, for same dataset MNIST, CNN models work better than big, deep, simple NN models in a published paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا