ترغب بنشر مسار تعليمي؟ اضغط هنا

Light curves of symbiotic stars in massive photomeric surveys II: S and D-type systems

490   0   0.0 ( 0 )
 نشر من قبل Mariusz Gromadzki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of period analysis of ASAS, MACHO and OGLE light curves of 79 symbiotic stars classified as S and D-type. The light curves of 58 objects show variations with the orbital period. In case of 34 objects, orbital periods are estimated for the first time, what increases the number of symbiotic stars with known orbital periods by about 64 %. The light curves of 46 objects show, in addition to the long-term or/and orbital variations, short-term variations with time scales of 50-200 days most likely due to stellar pulsations of the cool giant component. We also report eclipse-like minima and outbursts present in many of the light curves.



قيم البحث

اقرأ أيضاً

We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical a nd Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.
Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation-hydrodynamics simulations of type II SN l ight curves from red (RSG) and blue supergiant (BSG) star explosions to investigate the impact on SN observables of inhomogeneities in density or composition, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.
We have collected continuum data of a sample of D-type symbiotic stars. By modelling their spectral energy distribution in a colliding-wind theoretical scenario we have found the common characteristics to all the systems: 1) at least two dust shells are clearly present, one at sim 1000 K and the other at sim 400 K; they dominate the emission in the IR; 2) the radio data are explained by thermal self-absorbed emission from the reverse shock between the stars; while 3) the data in the long wavelength tail come from the expanding shock outwards the system; 4) in some symbiotic stars, the contribution from the WD in the UV is directly seen. Finally, 5) for some objects soft X-ray emitted by bremsstrahlung downstream of the reverse-shock between the stars are predicted. The results thus confirm the validity of the colliding wind model and the important role of the shocks. The comparison of the fluxes calculated at the nebula with those observed at Earth reveals the distribution throughout the system of the different components, in particular the nebulae and the dust shells. The correlation of shell radii with the orbital period shows that larger radii are found at larger periods. Moreover, the temperatures of the dust shells regarding the sample are found at 1000 K and <=400 K, while, in the case of late giants, they spread more uniformly throughout the same range.
We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sourc es, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.
We used long-term visual amateur observations of several symbiotic variables for detection of periods that may be caused by pulsation. The examples of multiple periodicities are discussed individually in each case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا