A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We also derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.