ﻻ يوجد ملخص باللغة العربية
We investigate the polarization dependence of the carrier excitation and relaxation in epitaxial multilayer graphene. Degenerate pump-probe experiments with a temporal resolution of 30 fs are performed for different rotation angles of the pump-pulse polarization with respect to the polarization of the probe pulse. A pronounced dependence of the pump-induced transmission on this angle is found. It reflects a strong anisotropy of the pump-induced occupation of photogenerated carriers in momentum space even though the band structure is isotropic. Within 150 fs after excitation an isotropic carrier distribution is established. Our observations imply the predominant role of collinear scattering preserving the initially optically generated anisotropy in the carrier distribution. The experiments are well described by microscopic time-, momentum, and angle-resolved modelling, which allows us to unambiguously identify non-collinear carrier-phonon scattering to be the main relaxation mechanism giving rise to an isotropic distribution in the first hundred fs after optical excitation.
The relativistic nature of Dirac electrons and holes in graphene profoundly affects the way they interact with impurities. Signatures of the relativistic behavior have been observed recently in scanning tunneling measurements on individual impurities
We have investigated a new feature of impurity cyclotron resonances common to various localized potentials of graphene. A localized potential can interact with a magnetic field in an unexpected way in graphene. It can lead to formation of anomalous b
We demonstrate the interaction between surface acoustic waves and Dirac electrons in monolayer graphene at low temperatures and high magnetic fields. A metallic interdigitated transducer launches surface waves that propagate through a conventional pi
The relativistic nature of charge carriers in graphene is expected to lead to an angle- dependent transmission through a potential barrier, where Klein tunneling involves annihilation of an electron and a hole at the edges of the barrier. The signatu
Dirac carriers in graphene are commonly characterized by a pseudospin degree of freedom, arising from the degeneracy of the two inequivalent sublattices. The inherent chirality of the quasiparticles leads to a topologically non-trivial band structure