ﻻ يوجد ملخص باللغة العربية
Frequency-dependent and temperature-dependent dielectric measurements are performed on double perovskite Tb$_2$NiMnO$_6$. The real ($epsilon_1$) and imaginary ($epsilon_2$) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from bulk, grain boundaries and the sample-electrode interfaces respectively. The temperature and frequency variation of $epsilon_1$ and $epsilon_2$ are successfully simulated by a $RC$ circuit model. The complex plane of impedance, $Z$-$Z$, is simulated using a series network with a resistor $R$ and a constant phase element. Through the analysis of frequency-dependent dielectric constant using modified-Debye model, different relaxation regimes are identified. Temperature dependence of dc conductivity also presents a clear change in slope at, $T^*$. Interestingly, $T^*$ compares with the temperature at which an anomaly occurs in the phonon modes and the Griffiths temperature for this compound. The components $R$ and $C$ corresponding to the bulk and the parameter $alpha$ from modified-Debye fit tend support to this hypothesis. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is marked.
Fundamental and harmonic magneto-dielectricity studied for varied perovskite systems-- Pb0.98Gd0.02(Mg1/3Nb2/3)0.995O3 (A-site co-doped PGMN magneto-relaxor), La0.95Ca0.05CoO3 (A-site doped spin-state LCCO), and La2NiMnO6 (double-perovskite LNMO mult
We carry out first-principles calculations of the nonlinear dielectric response of short-period ferroelectric superlattices. We compute and store not only the total polarization, but also the Wannier-based polarizations of individual atomic layers, a
Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this
We report the comprehensive experimental results identifying the magnetic spin ordering and the magnetization dynamics of a double perovskite Pr2CoFeO6 by employing the (dc and ac) magnetization, powder neutron diffraction (NPD) and X-ray magnetic ci
Simple perovskite crystals undergo structural phase transitions on cooling to low temperatures, which significantly change the material properties of the crystal. In this work we rigorously characterize the temperature evolution of permittivity of a