ﻻ يوجد ملخص باللغة العربية
We study the change in the speed of pushed and bistable fronts of the reaction diffusion equation in the presence of a small cut-off. We give explicit formulas for the shift in the speed for arbitrary reaction terms f(u). The dependence of the speed shift on the cut-off parameter is a function of the front speed and profile in the absence of the cut-off. In order to determine the speed shift we solve the leading order approximation to the front profile u(z) in the neighborhood of the leading edge and use a variational principle for the speed. We apply the general formula to the Nagumo equation and recover the results which have been obtained recently by geometric analysis. The formulas given are of general validity and we also apply them to a class of reaction terms which have not been considered elsewhere.
We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.
We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form $u_t + mu phi(u) u_x = u_{xx} +f(u)$ for positive reaction terms with $f(0 >0$. The function $phi(u)$ is continuous and vanishes at $u=0$. A varia
We establish an integral variational principle for the spreading speed of the one dimensional reaction diffusion equation with Stefan boundary conditions, for arbitrary reaction terms. This principle allows to obtain in a simple way the dependence of
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their u
We study the asymptotic speed of traveling fronts of the scalar reaction diffusion for positive reaction terms and with a diffusion coefficient depending nonlinearly on the concentration and on its gradient. We restrict our study to diffusion coeffic