ﻻ يوجد ملخص باللغة العربية
Images of semiconductor `dot in rods and their small clusters are studied by measuring the second-order correlation function with a spatially resolving ICCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed.
Dynamical materials that capable of responding to optical stimuli have always been pursued for designing novel photonic devices and functionalities, of which the response speed and amplitude as well as integration adaptability and energy effectivenes
This review describes an emerging field of waveguide quantum electrodynamics (WQED) studying interaction of photons propagating in a waveguide with localized quantum emitters. In such systems, atoms and guided photons are hybridized with each other a
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms. However, the high-yield integration of large numbers of individually addressable colloidal quantum
We consider the propagation of classical and non-classical light in multi-mode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much like the light-intensity distribution in such systems, evolve in a perio
Elevated-temperature polyol-based colloidal-chemistry approach allows for the development of size-tunable (50 and 86 nm) assemblies of maghemite iso-oriented nanocrystals, with enhanced magnetization. 1H-Nuclear Magnetic Resonance (NMR) relaxometric