ترغب بنشر مسار تعليمي؟ اضغط هنا

Can eccentric debris disks be long-lived? A first numerical investigation and application to $zeta^2$ Reticuli

87   0   0.0 ( 0 )
 نشر من قبل Virginie Faramaz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that these provide evidence for massive perturbers that sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around $zeta^2$ Ret. In contrast with previously reported systems, the disk is significantly eccentric, and the system is Gyr-old. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit. Both analytical predictions and numerical N-body simulations are used to investigate the observable structures that could be produced by eccentric perturbers. The long-term evolution of the disk geometry is examined, with particular application to the $zeta^2$ Ret system. In addition, synthetic images of the disk are produced for comparison with Herschel observations. We show that an eccentric companion can produce both the observed offsets and eccentric disks. Such effects are not immediate and we characterise the timescale required for the disk to develop to an eccentric state. For the case of $zeta^2$ Ret, we place limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around $zeta^2$ Ret can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux, extent). We determine that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures provide potential evidence of the presence of such a companion in a planetary system. We consider the example of $zeta^2$ Ret, whose observed eccentric disk can be explained by a distant companion at tens of AU, on an eccentric orbit ($e_pgtrsim 0.3$).



قيم البحث

اقرأ أيضاً

135 - V. Faramaz 2018
The presence of a debris disc around the Gyr-old solar-type star $zeta^2,mathrm{Reticuli}$ was suggested by the $mathit{Spitzer}$ infrared excess detection. Follow-up observations with $mathit{Herschel}$/PACS revealed a double-lobed feature, that dis played asymmetries both in brightness and position. Therefore, the disc was thought to be edge-on and significantly eccentric. Here we present ALMA/ACA observations in Band 6 and 7 which unambiguously reveal that these lobes show no common proper motion with $zeta^2,mathrm{Reticuli}$. In these observations, no flux has been detected around $zeta^2,mathrm{Reticuli}$ that exceeds the $3sigma$ levels. We conclude that surface brightness upper limits of a debris disc around $zeta^2,mathrm{Reticuli}$ are $5.7,mathrm{mu Jy/arcsec^2}$ at 1.3 mm, and $26,mathrm{mu Jy/arcsec^2}$ at 870 microns. Our results overall demonstrate the capability of the ALMA/ACA to follow-up $mathit{Herschel}$ observations of debris discs and clarify the effects of background confusion.
88 - Wing-Kit Lee 2019
Accretion disks can be eccentric: they support $m=1$ modes that are global and slowly precessing. But whether the modes remain trapped in the disk---and hence are long-lived---depends on conditions at the outer edge of the disk. Here we show that in disks with realistic boundaries, in which the surface density drops rapidly beyond a given radius, eccentric modes are trapped and hence long-lived. We focus on pressure-only disks around a central mass, and show how this result can be understood with the help of a simple second-order WKB theory. We show that the longest lived mode is the zero-node mode in which all of the disks elliptical streamlines are aligned, and that this mode decays coherently on the viscous timescale of the disk. Hence such a mode, once excited, will live for the lifetime of the disk. It may be responsible for asymmetries seen in recent images of protoplanetary disks.
313 - Margaret Pan 2016
Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing pericenter glow, an enhancement of the disk brightness in regions nearest the central star. At long wavele ngths, however, the disk apocenters should appear brighter than their pericenters: in the long wavelength limit, we find the apocenter/pericenter flux ratio scales as 1+e for disk eccentricity e. We produce new models of this apocenter glow to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ATCA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks dust grain properties and size distributions.
Context: Since circumstellar dust in debris disks is short-lived, dust-replenishing requires the presence of a reservoir of planetesimals. These planetesimals in the parent belt of debris disks orbit their host star and continuously supply the disk w ith fine dust through their mutual collisions. Aims: We aim to understand effects of different collisional parameters on the observational appearance of eccentric debris disks. Methods: The collisional evolution of selected debris disk configurations was simulated with the numerical code ACE. Subsequently, selected observable quantities are simulated with our newly developed code DMS. The impact of the eccentricity, dynamical excitation, and the material strength is discussed with respect to the grain size distribution, the spectral energy distribution, and spatially resolved images of debris disk systems. Results: The most recognizable features in different collisional evolutions are as follows. First, both the increase of dynamical excitation in the eccentric belt of the debris disk system and the decrease of the material strength of dust particles result in a higher production rate of smaller particles. This reduces the surface brightness differences between the periastron and the apastron sides of the disks. For very low material strengths, the pericenter glow phenomenon is reduced and eventually even replaced by the opposite effect, the apocenter glow. Second, it is possible to constrain the level of collisional activity from the appearance of the disk, for example, the wavelength-dependent apocenter-to-pericenter flux ratio. Within the considered parameter space, the impact of the material strength on the appearance of the disk is stronger than that of dynamical excitation of the system. Finally, we find that the impact of the collisional parameters on the net spectral energy distribution is weak.
210 - W. Lyra , M. Kuchner 2013
Debris disks around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of the planets. However, these analyses have largel y ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا