ترغب بنشر مسار تعليمي؟ اضغط هنا

A Roadmap for Canadian Submillimetre Astronomy

395   0   0.0 ( 0 )
 نشر من قبل James Di Francesco
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tracy Webb




اسأل ChatGPT حول البحث

We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canadas decadal Long Range Plan process, we emphasize that continued involvement in a large, single-dish facility is crucial given Canadas substantial investment in ALMA and numerous PI-led submillimetre experiments. In particular, we recommend: i) an extension of Canadian participation in the JCMT until at least the unique JCMT Legacy Survey program is able to realize the full scientific potential provided by the world-leading SCUBA-2 instrument; and ii) involvement of the entire Canadian community in CCAT, with a large enough share in the partnership for Canadian astronomers to participate at all levels of the facility. We further recommend continued participation in ALMA development, involvement in many focused PI-led submillimetre experiments, and partnership in SPICA.



قيم البحث

اقرأ أيضاً

[Highly abridged, from executive summary] As much as NewSpace presents opportunities, there are significant challenges that must be overcome, requiring engagement with policy makers to influence domestic and international space governance. Failure to do so could result in a range of long-lasting negative outcomes for science and space stewardship. How will the Canadian astronomical community engage with NewSpace? What are the implications for NewSpace on the astro-environment, including Earth orbits, lunar and cis-lunar orbits, and surfaces of celestial bodies? This white paper analyzes the rapid changes in space use and what those changes could mean for Canadian astronomers. Our recommendations are as follows: Greater cooperation between the astronomical and the Space Situational Awareness communities is needed. Build closer ties between the astronomical community and Global Affairs Canada (GAC). Establish a committee for evaluating the astro-environmental impacts of human space use, including on and around the Moon and other bodies. CASCA and the Tri-Council should coordinate to identify programs that would enable Canadian astronomers to participate in pay-for-use services at appropriate funding levels. CASCA should continue to foster a relationship with CSA, but also build close ties to the private space industry. Canadian-led deep space missions are within Canadas capabilities, and should be pursued.
(Abridged) Canadian astronomy has, for decades, benefited from access to observatories and participating in international consortia on one of the best astronomical sites in the world: Maunakea. However, Maunakea is part of the unceded territory of th e Native Hawaiian peoples and has always been of special significance to Hawaiian culture. The use of the summit and its science reserve has created tensions in the past decade, particularly with the development of the Thirty Meter Telescope. A meaningful and respectful response from the International astronomy community is still lacking. It is expected that the LRP 2020 will continue to support Canadian astronomy on Maunakea so a better official statement on the position and involvement of CASCA should be prepared. In this paper we present recommendations, based on the United Nation Declaration for the Rights of Indigenous Peoples, for the Canadian astronomical community to better support Indigenous rights on Maunakea and Hawaii while providing clear guidelines for the astronomical community to participate in activities conducted on Indigenous land. This framework is designed to motivate conversations with Indigenous communities regarding our place on Indigenous lands and our roles, and responsibilities toward the communities we are working with. Furthermore, we propose this framework as a basis for engaging with communities around the world regarding consent for astronomical facilities.
Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnant or area in Chile. In this context, we report on measurements of the sky opacity at 200 um over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environ- ment. Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astron- omy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 um is achieved for 75% of the time. The 200-um window opens with a typical transmission of 10% to 15% for 25% of the time. Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 {mu}m are possible all year round, and the 200-um window opens long enough and with a sufficient transparency to be useful. Although the polar environment severely constrains hardware design, a permanent observatory with appropriate technical capabilities is feasible. Because of the very good astronomical conditions, high angular resolution and time series (multi-year) observations at Dome C with a medium size single dish telescope would enable unique studies to be conducted, some of which are not otherwise feasible even from space.
Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55-671 {mu}m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.
The Planetary Camera and Spectrograph (PCS) for the Extremely Large Telescope (ELT) will be dedicated to detecting and characterising nearby exoplanets with sizes from sub-Neptune to Earth-size in the neighbourhood of the Sun. This goal is achieved b y a combination of eXtreme Adaptive Optics (XAO), coronagraphy and spectroscopy. PCS will allow us not only to take images, but also to look for biosignatures such as molecular oxygen in the exoplanets atmospheres. This article describes the PCS primary science goals, the instrument concept and the research and development activities that will be carried out over the coming years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا