ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Past Null Geodesic in the Lemaitre-Tolman-Bondi Cosmology

202   0   0.0 ( 0 )
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work provides a general discussion of the spatially inhomogeneous Lema^itre-Tolman-Bondi (LTB) cosmology, as well as its basic properties and many useful relevant quantities, such as the cosmological distances. We apply the concept of the single null geodesic to produce some simple analytical solutions for observational quantities such as the redshift. As an application of the single null geodesic technique, we carry out a fractal approach to the parabolic LTB model, comparing it to the spatially homogeneous Einstein-de Sitter cosmology. The results obtained indicate that the standard model, in this case represented by the Einstein-de Sitter cosmology, can be equivalently described by a fractal distribution of matter, as we found that different single fractal dimensions describe different scale ranges of the parabolic LTB matter distribution. It is shown that at large ranges the parabolic LTB model with fractal dimension equal to 0.5 approximates the matter distribution of the Einstein-de Sitter universe.



قيم البحث

اقرأ أيضاً

This paper describes the Fortran 77 code SIMU, version 1.1, designed for numerical simulations of observational relations along the past null geodesic in the Lemaitre-Tolman-Bondi (LTB) spacetime. SIMU aims at finding scale invariant solutions of the average density, but due to its full modularity it can be easily adapted to any application which requires LTBs null geodesic solutions. In version 1.1 the numerical output can be read by the GNUPLOT plotting package to produce a fully graphical output, although other plotting routines can be easily adapted. Details of the codes subroutines are discussed, and an example of its output is shown.
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this wor k we studied the inhomogeneous spacetime effects on high-derivatives and massive electromagnetic models. We used the LTB metric and calculated the physical quantities of interest, namely the scale factor, density of the electromagnetic field and Hubble constant, for the Proca and higher-derivative Podolsky models. We found a new singularity in both models, and that the magnetic field must be zero in the Proca model.
The Bondi formula for calculation of the invariant mass in the Tolman- Bondi (TB) model is interprated as a transformation rule on the set of co-moving coordinates. The general procedure by which the three arbitrary functions of the TB model are dete rmined explicitly is presented. The properties of the TB model, produced by the transformation rule are studied. Two applications are studied: for the falling TB flat model the equation of motion of two singularities hypersurfaces are obtained; for the expanding TB flat model the dependence of size of area with friedmann-like solution on initial conditions is studied in the limit $t to +infty$.
233 - R. Codur , C. Marinoni 2021
We provide a formula for estimating the redshift and its secular change (redshift drift) in Lema^itre-Tolman-Bondi (LTB) spherically symmetric universes. We compute the scaling of the redshift drift for LTB models that predict Hubble diagrams indisti nguishable from those of the standard cosmological model, the flat $Lambda$ Cold Dark Matter ($Lambda$CDM) model. We show that the redshift drift for these degenerate LTB models is typically different from that predicted in the $Lambda$CDM scenario. We also highlight and discuss some unconventional redshift-drift signals that arise in LTB universes and give them distinctive features compared to the standard model. We argue that the redshift drift is a metric observable that allows to reduce the degrees of freedom of spherically symmetric models and to make them more predictive and thus falsifiable.
160 - Alexander Gromov 1997
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا