ﻻ يوجد ملخص باللغة العربية
This work provides a general discussion of the spatially inhomogeneous Lema^itre-Tolman-Bondi (LTB) cosmology, as well as its basic properties and many useful relevant quantities, such as the cosmological distances. We apply the concept of the single null geodesic to produce some simple analytical solutions for observational quantities such as the redshift. As an application of the single null geodesic technique, we carry out a fractal approach to the parabolic LTB model, comparing it to the spatially homogeneous Einstein-de Sitter cosmology. The results obtained indicate that the standard model, in this case represented by the Einstein-de Sitter cosmology, can be equivalently described by a fractal distribution of matter, as we found that different single fractal dimensions describe different scale ranges of the parabolic LTB matter distribution. It is shown that at large ranges the parabolic LTB model with fractal dimension equal to 0.5 approximates the matter distribution of the Einstein-de Sitter universe.
This paper describes the Fortran 77 code SIMU, version 1.1, designed for numerical simulations of observational relations along the past null geodesic in the Lemaitre-Tolman-Bondi (LTB) spacetime. SIMU aims at finding scale invariant solutions of the
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this wor
The Bondi formula for calculation of the invariant mass in the Tolman- Bondi (TB) model is interprated as a transformation rule on the set of co-moving coordinates. The general procedure by which the three arbitrary functions of the TB model are dete
We provide a formula for estimating the redshift and its secular change (redshift drift) in Lema^itre-Tolman-Bondi (LTB) spherically symmetric universes. We compute the scaling of the redshift drift for LTB models that predict Hubble diagrams indisti
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.