ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab-initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of axisymmetric pulsars

406   0   0.0 ( 0 )
 نشر من قبل Alexander Philippov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform first-principles relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated electrosphere solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically-dominated pulsar wind. We calculate the magnetospheric structure, current distribution and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.



قيم البحث

اقرأ أيضاً

We present first-principles relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are acceler ated by surface electric fields and emit photons capable of producing electron-positron pairs. We inject secondary pairs at locations of primary energetic particles, whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere, with the Y-point and current sheet. Solutions with obliquities $lt 40^{circ}$ do not show pair production in the open field line region, because the local current density along magnetic field is below the Goldreich-Julian value. The bulk outflow in these solutions is charge separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved space-time or multipolar surface fields.
We investigate the temporal evolution of an axisymmetric magnetosphere around a rapidly rotating, stellar-mass black hole, applying a two-dimensional particle-in-cell simulation scheme. Adopting a homogeneous pair production, and assuming that the ma ss accretion rate is much less than the Eddington limit, we find that the black holes rotational energy is preferentially extracted from the middle latitudes, and that this outward energy flux exhibits an enhancement that lasts approximately 160 dynamical time scales. It is demonstrated that the magnetohydrodynamic approximations cannot be justified in such a magnetically-dominated magnetosphere, because the Ohms law completely breaks down, and because the charge-separated electron-positron plasmas are highly non-neutral. An implication is given regarding the collimation of relativistic jets.
It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this co nclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetospheres with pair formation. We find that the addition of frame-dragging effect makes local current density along the magnetic field larger than the Goldreich-Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle which could be related to pulsar radio emission. We conclude that general relativistic effects are essential for the existence of pulsar mechanism in low obliquity rotators.
We perform global particle-in-cell simulations of pulsar magnetospheres including pair production, ion extraction from the surface, frame dragging corrections, and high energy photon emission and propagation. In the case of oblique rotators, effects of general relativity increase the fraction of open field lines which support active pair discharge. We find that the plasma density and particle energy flux in the pulsar wind are highly non-uniform with latitude. Significant fraction of the outgoing particle energy flux is carried by energetic ions, which are extracted from the stellar surface. Their energies may extend up to a large fraction of the open field line voltage, making them interesting candidates for ultra-high-energy cosmic rays. We show that pulsar gamma-ray radiation is dominated by synchrotron emission, produced by particles that are energized by relativistic magnetic reconnection close to the Y-point and in the equatorial current sheet. In most cases, calculated light curves contain two strong peaks, in general agreement with Fermi observations. The radiative efficiency decreases with increasing pulsar inclination and increasing efficiency of pair production in the current sheet, explaining the observed scatter in $L_{gamma}$ vs $dot{E}$. We find that the high-frequency cutoff in the spectra is regulated by the pair loading of the current sheet. Our findings lay the foundation for quantitative interpretation of Fermi observations of gamma-ray pulsars.
We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistent $e^pm$ pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size $4096times 4096$. This allows us to a chieve a high voltage induced by the pulsar rotation and investigate pair creation in a young pulsar far from the death line. We find the following. (1) The energy release and $e^pm$ creation are strongly concentrated in the thin, Y-shaped current sheet, with a peak localized in a small volume at the Y-point. (2) The Y-point is shifted inward from the light cylinder by $sim 15%$, and breathes with a small amplitude. (3) The dense $e^pm$ cloud at the Y-point is in ultra-relativistic rotation, which we call super-rotation, because it exceeds co-rotation with the star. The cloud receives angular momentum flowing from the star along the poloidal magnetic lines. (4) Gamma-ray emission peaks at the Y-point and is collimated in the azimuthal direction, tangent to the Y-point circle. (5) The separatrix current sheet between the closed magnetosphere and the open magnetic field lines is sustained by the electron backflow from the Y-point cloud. Its thickness is self-regulated to marginal charge starvation. (6) Only a small fraction of dissipation occurs in the separatrix inward of the Y-point. A much higher power is released in the equatorial plane, especially at the Y-point where the created dense $e^pm$ plasma is spun up and intermittently ejected through the nozzle between the two open magnetic fluxes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا