ترغب بنشر مسار تعليمي؟ اضغط هنا

Hiding Missing Energy in Missing Energy

83   0   0.0 ( 0 )
 نشر من قبل Neal Weiner
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Searches for supersymmetry (SUSY) often rely on a combination of hard physics objects (jets, leptons) along with large missing transverse energy to separate New Physics from Standard Model hard processes. We consider a class of ``double-invisible SUSY scenarios: where squarks, stops and sbottoms have a three-body decay into two (rather than one) invisible final-state particles. This occurs naturally when the LSP carries an additional conserved quantum number under which other superpartners are not charged. In these topologies, the available energy is diluted into invisible particles, reducing the observed missing energy and visible energy. This can lead to sizable changes in the sensitivity of existing searches, dramatically changing the qualitative constraints on superpartners. In particular, for m_LSP>160 GeV, we find no robust constraints from the LHC at any squark mass for any generation, while for lighter LSPs we find significant reductions in constraints. If confirmed by a full reanalysis from the collaborations, such scenarios allow for the possibility of significantly more natural SUSY models. While not realized in the MSSM, such phenomenology occurs naturally in models with mixed sneutrinos, Dirac gauginos and NMSSM-like models.



قيم البحث

اقرأ أيضاً

Current analyses of the LHC data put stringent bounds on strongly interacting supersymmetric particles, restricting the masses of squarks and gluinos to be above the TeV scale. However, the supersymmetric electroweak sector is poorly constrained. In this article we explore the consistency of possible LHC missing energy signals with the broader phenomenological structure of the electroweak sector in low energy supersymmetry models. As an example, we focus on the newly developed Recursive Jigsaw Reconstruction analysis by ATLAS, which reports interesting event excesses in channels containing di-lepton and tri-lepton final states plus missing energy. We show that it is not difficult to obtain compatibility of these LHC data with the observed dark matter relic density, the bounds from dark matter direct detection experiments, and the measured anomalous magnetic moment of the muon. We provide analytical expressions which can be used to understand the range of gaugino masses, the value of the Higgsino mass parameter, the heavy Higgs spectrum, the ratio of the Higgs vacuum expectation values $tan beta$, and the slepton spectrum obtained in our numerical analysis of these observables.
153 - Hsin-Chia Cheng 2008
Many beyond the Standard Model theories include a stable dark matter candidate that yields missing / invisible energy in collider detectors. If observed at the Large Hadron Collider, we must determine if its mass and other properties (and those of it s partners) predict the correct dark matter relic density. We give a new procedure for determining its mass with small error.
We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is prod uced with each decaying to two leptons and an invisible particle (schematically, $ppto YY+jets$ followed by each $Y$ decaying via $Yto ell Xto ellellN$ where $N$ is invisible). This topology arises in many SUSY processes such as squark and gluino production and decay, not to mention $tanti t$ di-lepton decays. In the example where the final state leptons are all muons, our errors on the masses of the particles $Y$, $X$ and $N$ in the decay chain range from 4 GeV for 2000 events after cuts to 13 GeV for 400 events after cuts. Errors for mass differences are much smaller. Our ability to determine masses comes from considering all the kinematic information in the event, including the missing momentum, in conjunction with the quadratic constraints that arise from the $Y$, $X$ and $N$ mass-shell conditions. Realistic missing momentum and lepton momenta uncertainties are included in the analysis.
78 - T. M. Aliev , M. Savci 2007
We study unparticle physics effects in (Lambda_b -> Lambda + missing energy) decay with polarized $Lambda_b$ and $Lambda$ baryons. The sensitivity of the branching ratio of this decay and polarizations of (Lambda_b) and (Lambda) baryons on the scale dimension d_U and effective cut-off parameter (Lambda_U) are discussed.
We investigate the possibility that scalar leptoquarks generate consequential effects on the flavor-changing neutral-current decays of charmed hadrons into final states with missing energy ($ ot!!E$) carried away by either standard model or sterile n eutrinos. We focus on scenarios involving the $R_2$, $tilde R_2$, and $bar S_1$ leptoquarks and take into account various pertinent constraints, learning that meson-mixing ones and those inferred from collider searches can be of significance. We find in particular that the branching fractions of charmed meson decays $Dto M! ot!!E$, $M=pi,rho$, and $D_sto K^{(*)}! ot!!E$ and singly charmed baryon decays $Lambda_c^+to p! ot!!E$ and $Xi_ctoSigma! ot!!E$ are presently allowed to attain the $10^{-7}$-$10^{-6}$ levels if induced by $R_2$ and that the impact of $tilde R_2$ is comparatively much less. In contrast, the contributions of $bar S_1$, which couples to right-handed up-type quarks and the sterile neutrinos, could lead to branching fractions as high as order $10^{-3}$. This suggests that these charmed hadron decays might be within reach of the BESIII and Belle II experiments or future super charm-tau factories and could serve as potentially promising probes of leptoquark interactions with sterile neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا