ﻻ يوجد ملخص باللغة العربية
For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.
Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints
The properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the se
Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We
Kepler has revolutionised our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterisation of stars and Kepler is an excellent observing facility to perform asteroseismology. Here we select a samp
In the Sun, the frequencies of the acoustic modes are observed to vary in phase with the magnetic activity level. These frequency variations are expected to be common in solar-type stars and contain information about the activity-related changes that