ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

122   0   0.0 ( 0 )
 نشر من قبل Anwesh Mazumdar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.



قيم البحث

اقرأ أيضاً

Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.
The properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the se ismic data of Kepler solar-type stars. We find evidence for periodic variations in the acoustic properties of about half of the 87 analysed stars. In these proceedings, we highlight the results obtained for two such stars, namely KIC 8006161 and KIC 5184732.
Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to sim1% precision, and ages to sim2.5% precision (respectively 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.
Kepler has revolutionised our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterisation of stars and Kepler is an excellent observing facility to perform asteroseismology. Here we select a samp le of 35 Kepler solar-type stars which host transiting exoplanets (or planet candidates) with detected solar-like oscillations. Using available Kepler short cadence data up to Quarter 16 we create power spectra optimised for asteroseismology of solar-type stars. We identify modes of oscillation and estimate mode frequencies by ``peak bagging using a Bayesian MCMC framework. In addition, we expand the methodology of quality assurance using a Bayesian unsupervised machine learning approach. We report the measured frequencies of the modes of oscillation for all 35 stars and frequency ratios commonly used in detailed asteroseismic modelling. Due to the high correlations associated with frequency ratios we report the covariance matrix of all frequencies measured and frequency ratios calculated. These frequencies, frequency ratios, and covariance matrices can be used to obtain tight constraint on the fundamental parameters of these planet-hosting stars.
In the Sun, the frequencies of the acoustic modes are observed to vary in phase with the magnetic activity level. These frequency variations are expected to be common in solar-type stars and contain information about the activity-related changes that take place in their interiors. The unprecedented duration of Kepler photometric time-series provides a unique opportunity to detect and characterize stellar magnetic cycles through asteroseismology. In this work, we analyze a sample of 87 solar-type stars, measuring their temporal frequency shifts over segments of length 90 days. For each segment, the individual frequencies are obtained through a Bayesian peak-bagging tool. The mean frequency shifts are then computed and compared with: 1) those obtained from a cross-correlation method; 2) the variation in the mode heights; 3) a photometric activity proxy; and 4) the characteristic timescale of the granulation. For each star and 90-d sub-series, we provide mean frequency shifts, mode heights, and characteristic timescales of the granulation. Interestingly, more than 60% of the stars show evidence for (quasi-)periodic variations in the frequency shifts. In the majority of the cases, these variations are accompanied by variations in other activity proxies. About 20% of the stars show mode frequencies and heights varying approximately in phase, in opposition to what is observed for the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا