The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples


الملخص بالإنكليزية

We explore the cosmological implications of the angle-averaged correlation function, xi(s), and the clustering wedges, xi_perp(s) and xi_para(s), of the LOWZ and CMASS galaxy samples from Data Release 10 and 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard LCDM model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Omega_k = 0.0010 +- 0.0029, the total neutrino mass to Sum m_nu < 0.23 eV (95% confidence level), the effective number of relativistic species to N_eff=3.31 +- 0.27, and the dark energy equation of state to w_DE = -1.051 +- 0.076. These limits are further improved by adding information from type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find w_DE=-1.024 +- 0.052. We explore the constraints on the growth-rate of cosmic structures assuming f(z)=Omega_m(z)^gamma and obtain gamma=0.69 +- 0.15, in agreement with the predictions from general relativity of gamma=0.55.

تحميل البحث