ﻻ يوجد ملخص باللغة العربية
We present a study of the plerionic supernova remnant 0540-69.3 in the LMC in X-ray, radio, optical, and infrared. We find that the shell of 0540-69.3 is characterized in the X-ray by thermal nonequilibrium plasma with depleted Mg and Si abundances and a temperature of kT ~ 0.7 keV. This thermal emission is superimposed with synchrotron emission in several regions. Based on X-ray spectra and on morphological considerations in all surveyed wavebands, we conclude that the shell is expanding into a clumpy and highly inhomogeneous medium. In one region of the shell we find an overabundance of Ne, suggesting the presence of ejecta near the edge of the remnant. We also see evidence for reheating of material via a reverse shock originating from the interaction of the supernova blast wave with a particularly dense cloud in the surrounding medium. Finally, we perform the first detailed study of the halo region extending 1.2-2.2 pc from the central pulsar. We detect the presence of thermal and nonthermal spectral components but do not find evidence for mixing or ejecta. We conclude that the thermal component is not a counterpart to similar optical and infrared halos and that it is most likely due to the projection of shell material along the line of sight.
The structure, elemental abundances, physical conditions of the LMC supernova remnant (SNR) 0540-69.3 and its surroundings were investigated using [O III] imaging and spectroscopy. Several new spectral lines are identified, both in central filaments
We have used the ESO NTT/EMMI and VLT/FORS1 instruments to examine the LMC supernova remnant 0540-69.3 as well as its pulsar (PSR B0540-69) and pulsar-powered nebula in the optical range.Spectroscopic observations of the remnant covering the range of
We present and discuss new visual wavelength-range observations of the inner regions of the supernova remnant SNR 0540-69.3 that is located in the Large Magellanic Cloud (LMC). These observations provide us with more spatial and spectral information
Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$textsc{i}$ and CO observations determined that the SNR is interacting with molecula
The proximity of core-collapse Supernova 1987A (SN1987A) in the Large Magellanic Cloud (LMC) and its rapid evolution make it a unique case study of the development of a young supernova remnant. We aim at resolving the remnant of SN1987A for the first