ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived starting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Huckel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds.
We study the thermal fluctuation induced interactions between two surfaces containing Brownian charges which are held at different temperatures. Using a dynamical form of Debye-Huckel theory implemented within the stochastic equation for the density
The zero-temperature Casimir-Lifshitz force between two plates moving parallel to each other at arbitrary constant speed was found in [New J. Phys. 11, 033035 (2009)]. The solution is here generalized to the case where the plates are at different tem
We calculate the Casimir force between two parallel ideal metal plates when there is an intervening chiral medium present. Making use of methods of quantum statistical mechanics we show how the force can be found in a simple and compact way. The expr
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic detail
We investigate in detail the Casimir torque induced by quantum vacuum fluctuations between two nanostructured plates. Our calculations are based on the scattering approach and take into account the coupling between different modes induced by the shap