ﻻ يوجد ملخص باللغة العربية
Synthetic spin-orbit coupling in ultracold atomic gases can be taken to extremes rarely found in solids. We study a two dimensional Hubbard model of bosons in an optical lattice in the presence of spin-orbit coupling strong enough to drive direct transitions from Mott insulators to superfluids. Here we find phase-modulated superfluids with finite momentum that are generated entirely by spin-orbit coupling. We investigate the rich phase patterns of the superfluids, which may be directly probed using time-of-flight imaging of the spin-dependent momentum distribution.
We study the two-body bound and scattering states of two particles in a one dimensional optical lattice in the presence of a coherent coupling between two internal atomic levels. Due to the interplay between periodic potential, interactions and coher
We study the effects of spin-orbit coupling on the Mott-superfluid transition of bosons in a one-dimensional optical lattice. We determine the strong coupling magnetic phase diagram by a combination of exact analytic and numerical means. Smooth evolu
Periodically-driven quantum systems are currently explored in view of realizing novel many-body phases of matter. This approach is particularly promising in gases of ultracold atoms, where sophisticated shaking protocols can be realized and inter-par
Moir{e} superlattices in twisted bilayer graphene and transition-metal dichalcogenides have emerged as a powerful tool for engineering novel band structures and quantum phases of two-dimensional quantum materials. Here we investigate Moir{e} physics
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s